1st Meeting on Monte Carlo Simulations in Radiation Physics - October, 31st 2018
Overview

The purpose of the meeting is to supply an opportunity of scientific discussions and detailed reports on the use of *Monte Carlo radiation transport codes*. We believe that the first 1st Meeting on Monte Carlo Simulations in Radiation Physics - MCSRP_2018 will be founded through the combined efforts of our speakers. Other colleagues and researchers can join the Monte Carlo meeting group through the next meetings.

Our goal is to have a permanent meeting in Algeria for Monte Carlo experts and users.

The Monte Carlo meeting cover the following topics:

- Physics of radiation (gamma, charged particle, heavy ions ...)
- Medical physics
- Nuclear physics
- Physics of detectors and chain of detections
ORGANIZATION

Program Chair

- Zine El Abidine Chaoui Physics department, UFAS1.

Local organizers

- Pr L. Louail, Dean (faculty of sciences). UFAS1. Algeria
- Dr A. Masbah, Vice Dean (faculty of sciences). UFAS1. Algeria
- N. Bouchama, general secretary: logistics. UFAS1. Algeria

Program committee

- Zine-El-Abidine Chaoui, UFAS1. Algeria
- Richard Hugtenburg, Swansea University, Wales. United Kingdom
- Wassila Boukhenfouf, UFAS1. Algeria
- Naima Amrani, UFAS1. Algeria
- Saad Khoudri, Anti-cancer center of Sétif. Algeria

Technical support:

- Nacim Benachour (b.nacim@univ-setif.dz). UFAS1. Algeria

Web-page:

https://www.univ-setif.dz/OCS/MMCSRA2018/MMCSRA2018
Presentations: Oral

<table>
<thead>
<tr>
<th>Name</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amrani Naima</td>
<td>Neutronic parameters calculations using MCNP code</td>
</tr>
<tr>
<td>Azbouche Ahmed</td>
<td>Use of MC simulation in INAA and gamma spectrometry for determination of REEs and radiotracer in soils</td>
</tr>
<tr>
<td>Benhalouche Saadia</td>
<td>GATE/Geant4 : application en imagerie médicale, médecine nucléaire et radiothérapie</td>
</tr>
<tr>
<td>Benzaid Djelloul</td>
<td>Simulation Monte Carlo du vertex d’interaction de la réaction 10B (n,α) 7Li</td>
</tr>
<tr>
<td>Boumala Dalil</td>
<td>Planar BEGe detector parameters optimization using Monte Carlo simulations for efficiency calibration</td>
</tr>
<tr>
<td>Chaoui Zine El Abidine</td>
<td>Monte Carlo simulations in dry and hydrated DNA</td>
</tr>
<tr>
<td>Chemingui F. Zohra</td>
<td>Monte carlo simulation on 4D imaging</td>
</tr>
<tr>
<td>CHIBANE B. Imene</td>
<td>L’utilisation des méthodes Monte Carlo dans le calcul de dose en radiothérapie externe</td>
</tr>
<tr>
<td>Dib Anis Samy Amine</td>
<td>Effects of Bio-nano materiels in proton therapy (Geant4 MC calculations)</td>
</tr>
<tr>
<td>Djaroum Said</td>
<td>Power Reactor Benchmark (BEAVRS) Core Criticality Calculation by Monte carlo Code (KENO-VI/SCALE)</td>
</tr>
<tr>
<td>FRANCIS Ziad</td>
<td>The Geant4-DNA processes for nanometric scale simulations</td>
</tr>
<tr>
<td>Hachemi Taha</td>
<td>Monte Carlo simulation of the Varian-Linac 6 MV-18MV of the CLCC of Setif</td>
</tr>
<tr>
<td>Hugtenburg Richard</td>
<td>Monte Carlo modelling and experimental verification of proton scattering in structured materials</td>
</tr>
<tr>
<td>Hugtenburg Richard</td>
<td>Monte Carlo in microbeam radiotherapy</td>
</tr>
<tr>
<td>Khelifi Rachid</td>
<td>La simulation Monte Carlo en Radiothérapie par la capture neutronique du Bore</td>
</tr>
<tr>
<td>Tedjani Ahmed</td>
<td>The Self-attenuation correction in environmental sample measurements using Monte Carlo simulations</td>
</tr>
<tr>
<td>Zergoug Ismail</td>
<td>The X-Ray Voxel Monte Carlo (XVMC) algorithm in the calculation of dose in lung cancer: A clinical study</td>
</tr>
</tbody>
</table>
Presentations: Poster

<table>
<thead>
<tr>
<th>Name</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aouir mohamed</td>
<td>Monte Carlo investigation of contrast enhancement during X-ray Imaging by the use of heavy ions</td>
</tr>
<tr>
<td>Betka Abderrahim</td>
<td>Simulation Monte-Carlo (code Penelope) du spectre de RX émit par un Tube Radiogène</td>
</tr>
<tr>
<td>Boukhalfa Salma</td>
<td>Calculation Method for detection efficiency of voluminous samples</td>
</tr>
<tr>
<td>Djerboua yacine</td>
<td>Determination of the Maxwellian Averaged Cross Section (MACS) at KT = 30 KeV by activation</td>
</tr>
<tr>
<td>Djabou Rihab El Houda</td>
<td>Développement des méthodes de microanalyses par spectrométrie gamma à bas bruit de fond en vue des applications environnementales.</td>
</tr>
<tr>
<td>Hachemi taha</td>
<td>PDD and profile of for small field dosimetry of the Varian-Linac of the CLCC of Setif</td>
</tr>
<tr>
<td>Ouar Mohammed</td>
<td>Study by the Monte Carlo method the effect of the gold nanoparticles on the neutron flux during proton therapy</td>
</tr>
<tr>
<td>Ould Mohamed Mounir</td>
<td>Étude expérimentale et Simulation Monte Carlo par Geant4 de l’efficacité d’un détecteur à scintillation NaI(Tl)</td>
</tr>
<tr>
<td>Ramdani samira</td>
<td>Electron and positron inelastic cross section for Monte Carlo Simulations in Water</td>
</tr>
<tr>
<td>Ramdani samira</td>
<td>Electron IMFP and SP for Monte Carlo Simulations in Guanine, Adenine and dry DNA</td>
</tr>
<tr>
<td>Tedjini Mohammed Hocine</td>
<td>Monte Carlo simulation of semiconductors radiation detectors in gamma-ray spectrometry</td>
</tr>
</tbody>
</table>
Oral Session
Neutronic parameters calculations using MCNP code (short talk)

Naima AMRANI ¹, Salah-Eddine BENTRIDI², Samra NEHAOUA³ and Ahmed BOUCENNA¹

¹Laboratoire de Dosage d’analyses et de caractérisations en haute résolution, UFAS1.
²Laboratoire de l’Énergie et des Systèmes Intelligents, Univ. Djilali Bounaama, Khemis Miliana
³Département de physique, Faculté des sciences, Université Mohamed BOUDIAFE M’Sila

Abstract:__

In this contribution we calculate some important neutronic parameters as critical mass, critical volume and the value of k_{eff} are estimated using MCNP code for different fissionable materials and also for diverse geometrical shape. We introduce the MCNP input file structure and also calculations steps. The fissile isotopes used are 239Pu, 235U and 232Th.

__
Use of Monte Carlo simulation in INAA and gamma spectrometry for determination of REEs and radiotracer in soils

Azbouche Ahmed

Nuclear Research Center of Algiers, 02, Bd. Frantz Fanon, B.P. 399, 16000, Algiers, Algeria

Abstract:

Instrumental Neutron Activation Analysis (INAA) and gamma spectrometry are the best methods for determination of REEs and radiotracers in soils with low detection limit. The experimental quantitative analysis requires tremendous laboratory work using large number of standards, reference geometrical sources for detector efficiency and Epithermal and thermal flux monitors. Monte Carlo simulation helps reduce experimental procedures and will replace flow controllers, standards and calibration sources to determine the concentration of elements in soil samples with good accuracy.

A Monte Carlo N Particles (MCNP5) model was used for gamma spectrometry and Neutron Activation Analysis, for determination of REEs (La, Nd, Eu, Tb, Yb and Hf) and radiotracers in soil. The developed model was carried out to establish the irradiation and measurement parameters. The HPGe detector’s parameters were optimized by comparing the measured efficiency values with simulated. The irradiation parameters $\varphi_{th}, \varphi_{epi}$ and G_{th}, G_{epi} corrections were determine by using the nuclear capture reaction:

$$^{197}Au + \frac{1}{2}n \sigma_{n,98}^{98}P \rightarrow ^{198}Au + \gamma$$

For gamma spectrometry, the model was used to determine the detector efficiency for extended sample taking account the coincidence summing and self attenuation of gamma rays. A good agreement between Monte Carlo and experiment results was found.

For apply this model in the soil redistribution study, the samples were irradiated at the reactor under a neutron flux of 2.36×10^{13} cm$^{-2}$ s$^{-1}$ for 04 hours. The gamma spectrometry analysis of soil was carried out using a high resolution HPGe semi-conductor detector with (1.8 keV for 60Co 1332.5 keV line). The spectra were analyzed using the Genie 2000 software dedicated to the processing of gamma spectra.

Keywords: MCNP5, Gamma spectrometry, INAA, REEs, Radiotracers, Soil redistribution.
GATE/Geant4 : application en imagerie médicale, médecine nucléaire et radiothérapie

Saadia Benhalouche
Laboratoire d’Analyse et d’Application des Rayonnements
Département de Génie Physique, Faculté de Physique
Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf
BP 1505 El-M’Nouar 31000, Oran

Abstract :

Les codes de calcul Monte Carlo ont montré depuis le XXème siècle leur efficacité et leur robustesse quant aux modélisation et simulation des différents processus physiques.

C’est particulièrement cet aspect qui est exploité pour la simulation des interactions rayonnement-matière dans les différentes modalités d’imagerie médicale et de radiothérapie.

Dans cet exposé, nous présenterons dans un premier temps une étude réalisée au sein du laboratoire LATIM UMR1101 Inserm (Brest, France) en partenariat avec le CHRU Morvan (Brest, France) pour la simulation Monte Carlo avec la plateforme GATE/Geant4 d’une chaîne complète allant d’un accélérateur linéaire de particules vers un imageur portal en mode imagerie volumique conique assistée par ordinateur (MV-CBCT Mega Volt Cone Beam Computed Tomography).

Dans un deuxième temps, avec la même plateforme, nous nous sommes intéressés à la simulation de l’unité d’irathérapie et de l’unité de biophysique et de médecine nucléaire de l’EHU Oran 1er Novembre, le but dans ce travail était d’étudier l’exposition due aux différentes activités et radiopharmaceutiques utilisés en médecine nucléaire, mais aussi procéder à une étude comparative (simulation versus mesures) pour la vérification de la conformité des installations en termes de radioprotection des patients et du personnel.

Le but finalement, est de montrer le réalisme et la robustesse de la plateforme de simulation GATE/Geant4, et l’obtention à des buts didactiques et scientifiques d’une chaîne complète disponible virtuellement comprenant un dispositif de traitement en radiothérapie ainsi que pour le diagnostic.
Simulation Monte Carlo du vertex d’interaction de la réaction $^{10}B(n,\alpha)^7Li$

Djelloul BENZAID, Abdeslam SEGHOUR* et Salaheddine BENTRIDI

University Djilali BOUNAAMA KHEMIS MILIANA, Algérie
*Centre de Recherche Nucléaire d’Alger, Algérie

Abstract :

Les neutrons, du fait de leur neutralité ne constituent pas un rayonnement directement ionisant et interagissent essentiellement avec les noyaux qui constituent leur voisinage. C’est donc l’interaction nucléaire qui traduit en effet la présence de ces neutrons qui ne sont pas détectable d’une manière analogique directe. De ce fait, pour détecter ces particules neutres il faudrait d’abord convertir leur passage dans un milieu donné par le biais des produits issus des réactions nucléaires qu’ils induisent. Ces produits sont généralement des particules chargées susceptibles d’être détectées analogiquement.

C’est le comportement de ces produits de réaction qui permet en fait, d’en savoir plus sur les caractéristiques des neutrons incidents ayant induit la réaction en question.

On appelle « Vertex d’interaction », le point d’interaction du neutron incident et du noyau cible. Ce point est décisif pour la suite du trajet des particules chargées produites.

Dans ce travail nous nous sommes intéressés à la réaction $^{10}B(n,\alpha)^7Li$ pour simuler le vertex d’interaction par la méthode Monte Carlo tout en se basant sur le point de départ des produits de réaction. Quelques résultats obtenus sont comparés avec d’autres travaux existants dans la littérature en liaison avec ce sujet.
Planar BEGe detector parameters optimization using Monte Carlo simulations for efficiency calibration (short talk)

D. Boumala, A. Tedjani and A. Belafrites

Laboratoire de Physique des Rayonnements et Applications, Université de Jijel, BP 98 Ouled Aissa, 18000 Jijel, Algérie

Abstract: __

This work reports on the use of MCNPX Monte Carlo code in the efficiency calibration of a Broad-Energy Germanium (BEGe) detector. Initial discrepancies found between the experimental and computational efficiency values are related to the poor knowledge of some physical parameters of the detector. As a consequence, a sensitivity analysis was carried out. Each parameter was systematically analysed, and an optimization model of the detector was determined. The obtained results are consistent, allowing this model to be used in computational efficiency calibrations of the equipment at stake.

Monte Carlo simulations in DNA (hydrated and Dry structure):
Part I : electron energy deposited and backscattered yields

Z. Chaoui, N. Y. Aouina and S. Ramdani
Department of Physics-Faculty of sciences. University Ferhat Abbas-Setif1
Email address: zchaoui@univ-setif.dz

Abstract:

Knowledge of the interaction details of charged particles with DNA structure is important for the evaluation of the radiobiological effect. In particular, electrons with low energies are responsible of most for the modification in the bases or sugar-backbone. Knowledge of DNA structure also play an important role; dry DNA differs from hydrated DNA in the number of water molecule surrounding the nucleotides. The purpose of the present talk is to show the variation of the energy deposited when the structure of the DNA varies from dry DNA to hydrated DNA containing 6, 8, 12 and 20 water molecules. An in-house MC code is used to simulate electron energies less than 1keV in 2nm, 4nm, 6 nm strands of DNA to model the energy deposited and yield of backscattered and transmitted electrons. Details of the cross sections used are also described.
Monte carlo simulation on 4D imaging (short talk)

F. Z. Chemingui, F. Benrachi

Faculté de Sciences Exactes. Université frères Mentouri Constantine 1.

Abstract:

Patient motion is inevitably present in all processes of diagnostics, it produces artefacts and uncertainties. 4D medical imaging is a powerful technique includes time resolve volumetric CT, it is used for studying internal organ motion, correcting motion artefacts and providing temporal volumetric images for radiation therapy.

In this study we integrate 4DCT DICOM data of lung cancer into Geant 4 Monte Carlo platform to visualize the advantages that can give 4D medical imaging to guide the development of proton therapy treatment.

Keywords: Geant 4, Monte Carlo, 4D medical Imaging…
L’utilisation des méthodes Monte Carlo dans le calcul de dose en radiothérapie externe (short talk)

Bouchra Imene CHIBANE¹ ², Fatima BENRACHI¹, Mouhamed Salah BALI²

¹ Laboratoire de physique mathématique et subatomique, Université des frères Mentouri Constantine 1. Algérie
² ATHENA Medical Center, Constantine. Algérie

Abstract : __

La radiothérapie externe est une technique de traitement qui vise à détruire les cellules cancéreuses en utilisant des rayonnements ionisants. Le calcul de dose est au centre de la planification de traitement, ce calcul doit être précis et assez rapide pour permettre une utilisation routinière du calcul de dose. Les modèles de calcul de dose utilisés dans la planification de traitement en radiothérapie ont progressivement évolué au fil des années, et l’implémentation des algorithmes de calcul de dose basés sur la méthode Monte Carlo dans ces systèmes a été possible depuis plusieurs années. De nos jours, il est reconnu que l’utilisation des algorithmes de calcul basés sur la méthode Monte Carlo permet d’améliorer le calcul de dose en radiothérapie en termes de précision et de rapidité.

Mots clés : radiothérapie externe, TPS, algorithmes de calcul.
Monte Carlo simulation of proton therapy using bio-nanomaterials

Anis Samy Amine Dib, Chafika Belamri, Ahmed H. Belbachir

Laboratory of Analysis and Application of Radiation, Department of genie physics, University of Sciences and Technology M. Boudiaf (USTO-MB), Oran, Algeria

Anis.dib@univ-usto.dz

Abstract: In recent years, there has been a spectacular development in nanomedicine field with new nanoparticles for diagnosis and cancer therapy. Although most researchers have been always interested in gold nanoparticles (GNPs). In the present work we present a comparison between the use of bio-nanomaterials in proton therapy.

Consequently, our results show that platinum nanoparticles (PtNPs) present an interesting advantages comparing with GNPs and silver nanoparticles. On the other hand, the use of PtNPs facilitates in a considerable way the proton therapy.

Keywords: dose; Monte Carlo; proton therapy and gold nanoparticles.
Power Reactor Benchmark (BEAVRS) Core Criticality Calculation by Monte Carlo Code (KENO-VI/SCALE)

Said DJAROUm, Aissa BOURNANE
Birine Nuclear Research Center
Atomic Energy Commission
s.djaroum@comena-dz.org

Abstract: Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-6.1 code system was applied for pin-by-pin calculations of the physical parameters for the first cycle BEAVERS BENCHMARK reactor core. The parameters were obtained by the above-mentioned Monte Carlo calculations for several libraries available in SCALE package.

Key words: BEAVERS, SCALE 6.1, KENO-VI
The Geant4-DNA processes for nanometric scale simulations

Ziad Francis

Saint Joseph University of Beirut, Faculty of Sciences, Department of Physics.

Email address: ziad.francis@usj.edu.lb

Abstract:

In this presentation the Geant4-DNA set of processes is presented describing collisions for electrons, protons, alpha particles and charged ions in liquid water. The particle track simulation uses a step-by-step approach which makes these processes suitable for molecular scale simulations since there is no production energy cut-off like in standard general-purpose Monte-Carlo codes. The physics processes that are available in the current public version will be presented. These include cross sections for elastic and inelastic collisions. The physico-chemical and the chemical phase processes will be briefly introduced.

Several applications have been carried out using Geant4-DNA mainly in the field of radiobiology. We will show few examples, as well as a tessellated 3D realistic mitochondrial phantom application. Calculations of the yields of DNA strand breaks were also carried out for protons and heavier ions irradiations. These calculations were mainly based on physical interactions analysis using data mining algorithms, carbon ion fragmentation effects were also investigated using this latter approach.

References

Monte Carlo simulation of the Varian-Linac 6 MV-18MV of the Anti-cancer centre of Setif (short talk)

T. Hachemi and Z. Chaoui
Physics Department, Faculty of Sciences. UFAS1
taha.hachemi@univ-setif.dz

Abstract:

La présentation porte sur la simulation Monte Carlo d’un accélérateur de type Varian-IX utilisant penelope-2014 pour des sources de photons hautes énergies 6MV et 18 MV. Elle a pour but de données les détails des étapes de la simulation de la tête de l’accélérateur. Les détails concernent le spot de la source, la cible, les mâchoires primaires, les fenêtres en Be, le filtre égalisateur, les chambres d’ionisations monitricies, le miroir et les mâchoires secondaires (X, Y). Les problèmes de la géométrie seront discutés ainsi que les difficultés des détails de la siutation Monte Carlo vu la taille des espaces de phase des particules généré durant la production des faisceaux de photons. Le spectre d’énergie du faisceau de photons de 6MV obtenu à DSP =100 cm est en bon accord avec le spectre expérimental. D’autres résultats concernant la validation du calcul seront présentés.

Mots clés: Sources hautes énergies 6MV et 18MV; Monte Carlo ; espace de phases des particules ;
Monte Carlo modelling and experimental verification of proton scattering in structured materials

Dr Richard Hugtenburg
University of Swansea, Wales, UK
r.p.hugtenburg@swansea.ac.uk

Abstract:

Proton radiotherapy employs the use of the Bragg peak to minimise radiation damage beyond the site of the tumour and is likely to lead to a reduction in side-effects for a variety of cancer treatments. When protons traverse materials with structures that cannot be resolved with x-ray computer tomography (CT) such as trabecular bone, scattering and variations in path length lead to uncertainties in the range of the proton. The transport of protons through structured materials has been modelled with the FLUKA Monte Carlo code and experimental bench-marks have been performed with a 36 MeV proton beam. Methods for determining and reducing the uncertainty associated with the phenomenon have been examined, including a novel MRI sequence that is able to achieve sub-mm resolution in bone.
Monte Carlo in microbeam radiotherapy (short talk)

Dr Richard Hugtenburg
University of Swansea. Wales. UK
r.p.hugtenburg@swansea.ac.uk

Abstract:

Microbeams have been shown to have extraordinary tissue-sparing properties that could be exploited to deliver high doses to radiation resistant tumours. Microbeams are typically 50 microns in width and the radiation that scatters out of the microbeam, including Compton scattered photons and long-range photoelectrons, is difficult to measure experimentally, but potentially provides a rigorous test of scattering models used in Monte Carlo codes. We have shown that there are significant discrepancies between three of the most well-known photon and electron Monte Carlo codes, EGS, GEANT and PENEOPE. In particular, differences in the normalisation procedure for the photo-effect cross-section lead to significant differences in this particular application. Calculations have been compared to the latest measurements suggesting that experimental methods will help to clarify which is the correct theoretical approach.
Développement de la radiothérapie par capture neutronique du Bore: Simulation Monte Carlo

Khelifi Rachid
LPTHIRM, Département de Physique, Faculté des Sciences, USDB1
BP 270 Route de Soumaa, Blida

Abstract:

La radiothérapie consiste à irradier les cellules tumorales par un rayonnement ionisant afin de les éliminer. Il s’agit de fournir une dose létale à ces cellules en préservant les tissus sains. L’objectif de ce travail consiste à développer la radiothérapie par capture neutronique du Bore qui est la plus indiquée pour des tumeurs radio résistantes et diffuses. Actuellement, à travers le monde six réacteurs sont opérationnels et environ sept accélérateurs dédiés à la BNCT sont en cours de développement. Le challenge est de rendre cette procédure radiothérapeutique plus versatile en termes de source de neutrons et pathologie à traiter. À cet effet, la mise en œuvre de la production de neutrons à l’énergie et au flux optimale permet d’obtenir un faisceau de neutrons thérapeutiques de haute qualité. Le choix de la structure du modérateur et du réflecteur pour obtenir une qualité des faisceaux de neutrons, repose sur une simulation numérique par la méthode de Monté Carlo du spectre neutronique et de la dose absorbée dans un fantôme (tête de Snyder, foie, poumon…).
The Self-attenuation correction in environmental sample measurements using Monte Carlo simulations in order to determinate ^{210}Pb activity by Well GeHp Detector.

A. Tedjani, D. Boumala and A. Belafrites

Laboratoire de Physique des Rayonnements et Applications,
Université de Jijel, BP 98 Ouled Aïssa, 18000 Jijel, Algérie

Abstract:

Gamma-ray spectrometry method, especially for low-energy radiations, requires the correction of the self-attenuation effect in the volume sample. If the sample and the standard are treated in the same geometric setup this correction with respect to the standard is evaluated as a ratio of the detector efficiency for the standard of IAEA-447 used in this study to the detector efficiency for the sample. In the presented work, the analyses were done by Monte Carlo simulation method using MCNP6 code for small cylindrical samples with the well configuration of a GeHP detector.
The X-Ray Voxel Monte Carlo (XVMC) algorithm in the calculation of dose in lung cancer: A clinical study

Ismail Zergoug

Radiotherapy department.
Clinique Oncopole l'Espoir Oran. Algeria
i.zergoug@cliniqueoncopole.com

Abstract:

Dose calculation algorithm has proven different development during the last decay so to deliver the accurate dose to patient. Current general calculation algorithms such as Pencil beam Convolution (PBC) has shortcoming in presence of severe inhomogeneities, especially in low density media where a lack of secondary electrons is pronounced.

The aim of this study is to evaluate the impact and the accuracy of X-Ray Voxel Monte Carlo (XVMC) dose calculation algorithm in the treatment of lung cancer.
Poster Session
Monte Carlo investigation of contrast enhancement during X-ray Imaging by the use of heavy ions

Mohamed AOUIR, Samy Anis Amine DIB and Ahmed Hafid BELBACHIR

Laboratoire d’Analyse et d’Application des Rayonnements (*LAAR*). Département de Génie Physique, Faculté de Physique, USTO Mohamed Boudiaf, Oran.
aouir.mohamed@gmail.com

Abstract:__

The interpretation of images provided by an X-ray imaging is done according to resolution in contrast, a good contrast helps to differentiate between various structures of tissues (for example soft tissues and bones). On the other hand, the detection of certain structural anomalies in soft tissues can be hard, this is related to the low contrast between them because they have a very close chemical and physical proprieties. In this case, an injection of an agent of contrast is required to have a selective increase in the density of the target volume and not in other tissue.

The aim of this works of is to optimize, using a Monte Carlo simulation (Geant4 code), the choice of agent of contrast during an X-rays imaging, in order to improve the diagnosis of tumors. In this work, we have studied the effect of introduction of the heavy atoms (79Au and 53I) into a tumor localized at the medium of human head. We compared and analyzed our results of the transmitted photons and deposit energy, with the presence of Gold and Iodine in the tumor, according to several parameters: the energy of the X-ray beam, and the number of photons in the beam.

The results obtained for Gold are very promising compared to classical agents of contrast, and pose a subject of interest of using of Gold as an agent of contrast in X-ray imaging.

Keywords: X-ray imaging, contrast, medical diagnosis, contrast agent, biocompatibility, Monte Carlo, GEANT4.

__
Simulation Monte-Carlo (code Penelope)

du spectre de RX émit par un Tube Radiogène

Abderrahim Betka et Amira Tabbiche
Département de physique, faculté des sciences, université de Sétif
betkarahim@univ-setif.dz

Abstract :

Le code Penelope est un code de simulation Monte Carlo utiliser pour simuler le transport des électrons, des positrons et des photons ayant une énergie comprise entre 50 eV et 1GeV dans des matériaux simples et composites.

Ce travail consiste à utiliser le code PENELOPE afin d’étudier le changement du spectre de RX émet par un tube à RX, en fonction de la tension appliquée aux bornes du tube RX, la nature de l’anode et l’épaisseur du filtre.

Les résultats obtenus montrent clairement l’influence des paramètres cités en dessus sur la forme du spectre RX.

Mots clés : Radiologie, Tube à RX, Monte-Carlo, Penelope
Calculation Method for detection efficiency of voluminous samples

Boukhalfa Salma1, Belkessa Kahina1 and Khelifi Rachid1,

1LPTHIRM, Departement de Physique, Faculté des Sciences, Université de Blida 1, BP 270, Route de soumaa, Algérie
* boukhalfasalma@gmail.com

Abstract:__

The natural radioactivity evaluation using a gamma ray spectrometry chain with a 3" × 3" NaI(Tl) detector needs of voluminous samples analysis. This objective requires a good knowledge of the detection efficiency for this kind of sample. In a first step, the spatial efficiency using a multi-gamma ray of a point source has been determined. Then a method of Gauss-Tchebyshev polynomials was developed for an integral calculation of voluminous sample. In this case, a spatial function that depends on virtual detector center \(Z_c \) was determined. A Monte Carlo simulation efficiency has been validated by measurement of a known isotopic sources. The results obtained for efficiency show a good agreement between Gauss-Tchebyshev calculations method and Monte Carlo simulation.

Keywords: Radioactivity, detector efficiency, Monte Carlo Geant4, Gamma spectroscopy

Développement des méthodes de microanalyses par spectrométrie gamma à bas bruit de fond : applications environnementales.

Djabou Rihab El Houda1 and Abdelfettah Belafrites2

1Physics department, faculty of sciences. UFAS1

2Faculty of Sciences, University of Jijel.

Abstract:

Les travaux de recherches récents ont déjà permis de mettre en évidence de certains paramètres influents, notamment les phénomènes d’auto-absorption et de coïncidence, pour la mesure de radioactivité sur des échantillons environnementaux.

Cependant, la plupart des mesures conduites pour étudier le phénomène d’auto-absorption aux basses énergies a été faite avec un seul isotope, l’américium-241, émetteur γ à 59,54 keV. Comme il n’est pas possible d’extrapoler les résultats à d’autres énergies même proches, il est primordial de s’intéresser à d’autres isotopes, notamment au plomb-210 et à son énergie nominale à 46,54 keV, au thorium-234 à 63,28 et 92,37 keV. Dans le cadre de la correction des phénomènes de coïncidence, il est d’intérêt de parfaire la simulation Monte-Carlo, notamment à partir des schémas de désintégration des noyaux. Ceci requerra certainement l’utilisation des codes de simulation FLUKA ou GEANT4.

Dans un second temps, il s’agira d’améliorer la méthode pour déterminer le coefficient d’atténuation massique d’une matrice environnementale de composition inconnue, à travers la définition d’une composition chimique virtuelle. Celle-ci est indispensable pour définir la composition élémentaire dans le code de simulation. Il faudra donc s’attacher à retrouver une composition proche de celles des sédiments étudiés, surtout pour les éléments chimiques majoritaires.

Pour parfaire l’étude des carottes de sédiment, il faudra s’intéresser aux premiers centimètres de celles-ci, où les perturbations apportées par les organismes vivants sont les plus importantes et influent sur le taux de sédimentation. Cette perturbation, appelée bioturbation, sera estimée avec le béryllium-7 (période de 53 jours) et le thorium-234 (période de 24 jours).

Le mélange des interfaces de sédiments pourra de fait être mieux estimé, en fonction des influences des organismes vivants, de l’hydrologie et des saisons.

La troisième partie de cette recherche doctorale concernera la mesure de la radioactivité environnementale, notamment dans les engrais phosphatés et les mines de phosphate en Algérie, dans les mines uranifères exploitées ou fermées. Cela permettra de déterminer les niveaux de radioactivité naturelle et les risques radiologiques associés à l’utilisation des engrais et à l’activité minière.
Determination of the Maxwellian Averaged Cross Section (MACS) at KT = 30 KeV by activation

Y. DJERBOUA 1, N. AMRANI 1, P. MASTINU 2, A. BOUCENNA 1

1 DAC Laboratory, Physics Department, Faculty of sciences, UFAS1, Algeria
2 Laboratori Nazionali di Legnaro, INFN, Padova, Italy

Abstract:

The aim of this work is to measure the Maxwellian Averaged Cross Section MACS at the reference energy KT = 30 keV which is in direct relation to the temperature (corresponds to a temperature of 3.5×10^8 K) for some major elements important for the nuclear field and astrophysics by the activation method with a specific neutron flux.

In an accelerator (VDG), (p, n) reactions on 7Li are used for the production of neutrons whose spectrum must be known with precision to determine reference energy at KT = 30 keV, it is represented by a Maxwell-Boltzmann distribution, and used for activation of samples.

We study the neutron spectrum produced by MCNPX simulation of the neutron source obtained by the 7Li (p, n) 7Be reaction in an accelerator (VDG) which offers the possibility of adapting the neutron spectrum exactly to the range of stellar energy, and to adjust it with respect to a true Maxwell-Boltzmann distribution for a thermal energy of kT = 30 keV to have a good agreement.
PDD and profile of small field dosimetry in the Varian-Linac of the CLCC of Setif

Taha Hachemi and Zine-El-Abidine Chaoui
Physics Department, Faculty of Sciences. UFAS1
taha.hachemi@univ-setif.dz

Abstract:

Cette étude entre dans le cadre de l’amélioration de la prise en charge des malades cancéreux traités par des radiations ionisantes de hautes énergies.

La dosimétrie précise est une exigence fondamentale pour une utilisation sûre et efficace des rayonnements dans les applications médicales.

Le but de cette démarche est de chercher la précision de dose la détermination de la dose absorbée et d'étudier et de déterminer les données clés pour la simulation d’un accélérateur de type Varian-iX pour deux énergies des faisceaux de radiothérapie 6MV et 18MV.

Les figures présentées montrent les composants des différentes parties de l’accélérateur Varian-iX, avec la géométrie générée par pengeom.jar de PENELOPE-2014 avec une capture 2D & 3D. Les deux filtres égalisateurs qui permettent l’uniformité des faisceaux de 18MV et 6MV dans le plan d’irradiation qui ont été utilisés dans cette étude.

La simulation de l’accélérateur Varian-iX avec les deux énergies 6MV, 18MV ont été faites en utilisant penmain pour générer des fichiers d’espace de phase avant les mâchoires et à une profondeur de 100cm à la surface de l’eau.

La validation a été faite dans un fantôme d’eau de (30x30x30cm), le pourcentage de dose en profondeur (PDD) correspond au PDDs de l’expérimental, les Spectres d’énergies correspond aux énergies présentées dans la littérature, et en particuliers aux énergies du Centre de Lutte Contre le Cancer de Sétif.

Différents détecteurs de différents fournisseurs « Diode E, PinPoint-3D, Semiflex 0.3 cc/0.125cc, Farmer0.6cc » ont été créer pour la simulation et la détermination avec précision de la dose absolue dans l'eau, grâce à la correction des output factor qui sont nécessaires pour les petits champs.

Des calculs complets avec le code Monte Carlo PENELLOPE-2014 et un certain nombre de déterminations expérimentales sont en cours de réalisation pour une bonne correction.

Mots Clés : Accélérateur linéaire, Filtre égalisateur, Simulation Monte Carlo-PENELLOPE-2014- Détecteurs "DiodeE, PinPoint3D."
Study by the Monte Carlo method the effect of the gold nanoparticles on the neutron flux during proton therapy

M. Ouar, A.S.A Dib, M.N Belkaid
University of Science and Technology of Oran Mohamed BOUDIAF, Oran, Algeria. Faculty of Physics. Laboratory for Analysis and Application of Radiation (LAAR).
mohamedouar03@gmail.com

Abstract:___

The Monte Carlo technique is a computational tool that samples from known probability distributions to determine the average behavior of a system. It is used in radiotherapy to improve our understanding of the production, transport and the ultimate fate of therapeutic radiation. The Monte Carlo provides powerful demonstrations to solve proton therapy control problems and improve treatments.

Stray radiation (neutron, Gamma, electron …) exposures are of concern for patients receiving proton radiotherapy and vary strongly with several treatment factors. The goal of this work is the using of the Monte Carlo method implemented in the Geant4 code (Geometry and tracking) in order to simulate the effects of gold nanoparticles on the neutron flux during the treatment of brain tumor by proton therapy.

Keywords:
Monte Carlo - proton therapy - neutron flux - gold nanoparticles - Geant4

Étude expérimentale et Simulation Monte Carlo par Geant4 de l’efficacité d’un détecteur à scintillation NaI(Tl)

M. OuldMohamed¹, R. Khelifi¹, S. Chaibi¹

¹Laboratoire de Physique Théorique et Interaction Rayonnement-Matière. Université de Blida 1

ouldmohamedmounir79@gmail.com

Abstract : La spectroscopie gamma consiste à mesurer l’énergie et à compter le nombre de photons gamma émis par un échantillon pendant un certain temps. A partir de spectre enregistré, il est alors possible d’identifier les éléments radioactifs et de déterminer leur concentration dans l’échantillon étudié. La spectrométrie à l’aide des détecteurs à scintillation comme le NaI(Tl) est une des techniques d’analyse qualitative et quantitative les plus fréquemment utilisées dans le domaine de la mesure nucléaire. Dans cet état d’esprit que nous proposons dans ce travail une étude expérimentale et numérique (simulation Monte Carlo) de l’efficacité absolue d’un détecteur à scintillation NaI(Tl) , en utilisant trois sources radioactives ponctuelles (Cs137, Co60 et Eu152). Les principaux résultats de notre étude montrent que la simulation Monte Carlo est un outil très puissant qui peut se substituer à la mesure expérimentale lorsque celle-ci est complexe à réaliser.

Mots clés : Spectroscopie gamma, Détecteur NaI, Monte Carlo, Geant4.
Electron and positron inelastic cross section for Monte Carlo Simulations in Water

Samira Ramdani and Zine-El-Abidine Chaoui
Physics Department, Faculty of Sciences. UFAS1
samira.ramdhani@univ-setif.dz

Abstract:

We present here in this talk how to calculate mean inelastic free path (IMFP) and stopping power (SP) of electron and positron in water liquid as biological substitute using an abinitio dielectric formalism (full Penn model). The work is important because it is using the recent IXS optical data of Hayashi. Comparisons of the resulting IMFP and SP differ from those found in the literature based on Drude parametrization. We think that the present model is more realistic since it is free of predefined parameter. Other details concerning the validity of the present model will be discussed including of course comparisons with published data. The present results are suited to be implemented in general purpose Monte Carlo codes.

Key words: electron and positron inelastic collision in water liquid; IMFP; SP; MC simulation;

References:

Electron IMFP and SP for Monte Carlo Simulations in Guanine, Adenine and dry DNA

Samira Ramdani and Zine-El-Abidine Chaoui
Physics Department, Faculty of Sciences. UFAS1
samira.ramdhani@univ-setif.dz

Abstract:

Using Dielectric formalism and Penn modeling, electron and positron inelastic mean free paths and stopping powers are calculated from Adenine, Guanine and dry DNA in the range 10 eV to 30 keV. The Penn model is calculated from contribution of electron hole interaction plus the plasmon excitations. Both components are calculated from Lindhard model considering the medium as free electron gas weighted by the experimental and theoretical dielectric optical data. Sum rules are applied to the optical to test their validity. For higher energy losses, the dielectric function is calculated on the knowledge of the photo-absorption cross section of the atoms forming Adenine and Guanine. Present results are suggested to be used for the transport of electrons and positrons in DNA structure.
Monte Carlo simulation of semiconductors radiation detectors in gamma-ray spectrometry

M.H. TEDJINI, M. N BELKAID, A. OUKEBDANE and N. Belameiri.

tm.hocine@hotmail.fr

University of Science and Technology of Oran Mohamed BOUDIAF, Oran, Algeria. Faculty of Physics. Laboratory for Analysis and Application of Radiation (LAAR).

Abstract: __

II-VI semiconductor compound are available fabrication of compound semiconductor radiation detectors of X-ray and γ-ray and optical applications. In this study, we simulated semiconductor materials using in radiation detectors such as CdTe, MnTe, CdZnTe and CdMnTe alloys. The detection efficiency in 500-1400KeV energy range by determined the absolute and photo-peak detection efficiencies are simulated by Monte Carlo method implemented in Geant4 package. Also, the energy dependence of the resolution has been studied using a variety of low energy gamma rays sources. The obtained results showed that the detection efficiency depends on gamma ray energy and also source distance to the detector and density of materials.

Keyword:
Semiconductor, Monte Carlo, grant4, detection Efficiency.