REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Cahier des charges De reconduction d'une Formation à recrutement national

Licence

Technologie des Matériaux

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي

دفتر الشروط لتجدید تکوین ذات تسجیل وطنی

ليسانس تكنولوجيا المواد

SOMMAIRE

A – Fiche d'identification de la Licence
B – Lettre de demande de reconduction
C – Bilan de la formation
C.1 – Rappels des objectifs de la Licence
C.2 – Etudes statistiques
C.2.1 – Evolution des effectifs des étudiants
C.2.2 – Séries de bac et moyenne d'accès à la Licence
C.2.3 – Choix des étudiants pour cette formation
C.2.4 – Taux d'enseignements effectivement réalisé en volume
horaire par année
C.2.5 – Taux de réussite par année
C.2.6 – Stages d'étudiants
C.2.7 – Projets de fin d'études
C.2.8 – Employabilité des diplômés
D - Motivation et objectifs de la reconduction de la Licence
E - Position de la Licence
F – Profils de compétences visés
G – Potentialités nationales d'employabilité
H – Encadrement pédagogique
I – Supports et équipements pédagogiques
J – Structures de recherche de soutien
K – Participation du secteur utilisateur dans la Licence
L – Organisation de la Licence
L. I - Fiche d'organisation semestrielle des enseignements
L.2 - Fiches d'organisation des unités d'enseignement
L.3 - Programme détaillé par matière
M – Conventions
N – Curriculum Vitae succinct du responsable de la Licence
O - Avis et Visas des organes administratifs et consultatifs
P –Visa de la Conférence Régionale

A - Fiche d'identification de la Licence

Etablissement: UNIVERSITE FERHAT ABBAS SETIF 1

Faculté ou Institut : INSTITUT D'OPTIQUE ET MECANIQUE DE PRECISION

Département : Mécanique de précision

Domaine: SCIENCES ET TECHNOLOGIE

Filières/spécialités : OPTIQUE ET MECANIQUE DE PRECISON /

TECHNOLOGIE DES MATERIAUX

Responsable de la Licence¹:

Nom: KOLLI

Prénom: Mostafa

Grade: Maitre de conférences classe "A"

Email: Kolmus_eulma@ yahoo.fr

Mobile: 0551154111

Date de 1^{ère} habilitation: 2009

¹ Joindre le CV

B – Lettre de demande de reconduction:

A Monsieur le directeur général des enseignements et de la formation supérieurs

Monsieur,

Nous avons l'honneur de venir très respectueusement solliciter votre haute bienveillance de bien vouloir accorder un avis favorable pour la reconduction de la licence **Technologie des matériaux** dans la filière optique et mécanique de précision à recrutement national assurée à l'Institut d'optique et mécanique de précision de l'Université Ferhat Abbas Sétif 1.

Cette demande est justifiée par le besoin du milieu industriel et scientifique aux connaissances et compétences offertes par cette formation.

Veuillez agréer, Monsieur le Directeur, l'expression de notre profond respect.

C – Bilan de la formation:

C.1 – Rappels des objectifs de la formation:

Les matériaux sont à la base des préoccupations de l'industrie : de la conception du produit à sa fabrication. En effet, leurs propriétés et leurs domaines d'utilisation dépendent fortement des procédés technologiques de fabrication. La licence proposée répond aux besoins de connaître les différents aspects de la relation mise en forme-propriétés du matériau en passant par l'étude de sa structure.

En plus des quatre semestres du domaine sciences et techniques, les deux derniers semestres, de cette licence académique, sont axés essentiellement sur la technologie des matériaux. Ils vont permettre d'acquérir le vocabulaire et les notions physico-chimiques élémentaires utiles à la connaissance des propriétés et de la mise en œuvre des différentes familles de matériaux (métalliques, céramiques, plastiques et composites). Ils vont permettre, par ailleurs, le choix judicieux des matériaux et des techniques de mise en forme pour une application ou une fonction donnée.

Cette formation vise également la création d'un partenariat avec l'industrie afin d'apporter le savoir faire et l'expertise technique et scientifique aux entreprises dans le domaine de la technologie des matériaux.

C.2 – Etude statistique:

C.2.1. – Evolution des effectifs des étudiants (en précisant le sexe et les régions des étudiants) :

C.2.1.1 Effectifs étudiants par sexe : (M : Masculin, F : Féminin, T : Total)

	L1 ST				L2 ST			L3 Technologie des Matériaux		
Année	М	F	Т	М	F	T	M	F	Т	
2010-2011	138	133	271				24	8	32	
2011-2012	185	221	406	67	82	149	16	13	29	
2012-2013	222	296	518	78	128	206	22	30	52	
2013-2014	190	221	411	111	172	283	12	29	41	
2014-2015	162	187	349	73	109	182	13	40	53	

C.2.1.1 Effectifs étudiants par région :

	2011-2012		2012-2013		2013-2014		2014-2015	
Wilaya	Taux (%)							
	M	F	М	F	М	F	М	F
1	2,73	0,00	0,58	0,00	0,96	0,00	1,20	0,00
2	0,91	0,95	1,16	0,41	0,00	1,48	1,81	0,53

3	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.00
4	0,00	0,00 4,76	0,00	0,00	0,00	0,00	0,60	0,00
5			1,74	5,69	1,92	3,70	1,81	5,88
	3,64	0,95	4,65	3,66	4,81	1,48	6,63	2,67
7	5,45	4,76	2,33	3,66	3,85	2,96	1,20	3,74
	2,73	0,95	2,91	3,25	0,96	2,22	4,22	2,67
8	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	3,64	2,86	4,65	3,66	0,96	3,70	1,20	2,67
11	1,82	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	2,73	8,57	6,40	7,72	6,73	8,15	7,23	9,09
13	0,00	0,00	0,58	0,00	0,00	0,00	0,00	0,00
14	0,00	0,95	0,00	0,81	0,00	0,00	2,41	1,07
15	2,73	4,76	2,33	3,66	0,96	2,22	3,01	3,74
16	0,00	1,90	1,16	0,81	0,00	0,74	1,20	1,07
17	0,00	0,00	0,00	0,00	0,96	0,00	2,41	0,00
18	2,73	4,76	1,74	3,66	3,85	5,19	3,01	2,67
19	33,64	20,00	26,16	21,54	26,92	23,70	16,27	20,32
20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	4,55	1,90	5,81	2,85	4,81	1,48	3,01	2,67
22	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
23	1,82	0,95	0,58	1,22	0,00	0,74	0,60	0,53
24	0,00	0,95	1,16	2,03	0,96	0,00	1,81	1,60
25	0,91	2,86	1,16	1,22	0,96	1,48	3,61	1,60
26	0,00	0,00	1,16	0,00	0,00	0,00	1,81	0,00
27	0,91	0,00	1,16	0,00	0,96	0,00	0,00	0,00
28	6,36	5,71	4,65	3,66	9,62	5,19	4,82	4,81
29	0,00	0,95	0,58	0,00	0,00	0,00	0,00	0,00
30	0,00	0,95	1,16	0,81	5,77	0,74	1,20	1,07
31	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
32	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0,00
33	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
34	11,82	14,29	7,56	11,79	8,65	11,85	6,63	11,23
35	0,00	2,86	0,00	1,22	0,00	1,48	1,81	1,60
36	0,00	0,00	0,00	2,03	0,00	2,96	0,00	1,60
37	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
38	0,00	0,00	0,58	0,00	0,00	0,00	0,00	0,00
39	1,82	0,00	3,49	1,22	4,81	1,48	2,41	1,60
40	0,91	1,90	0,58	3,66	0,96	3,70	1,81	3,21
41	1,82	1,90	0,00	2,85	0,00	5,19	1,81	4,81
42	0,00	0,95	1,16	0,00	0,96	0,00	1,20	0,00
43	4,55	5,71	9,88	6,10	6,73	8,15	11,45	6,95
44	0,00	0,00	0,00	0,00	0,96	0,00	0,60	0,00
45	0,91	0,00	0,58	0,00	0,00	0,00	0,00	0,00
46	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
47	0,00	1,90	2,33	0,81	0,96	0,00	0,60	0,53
48	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

C.2.2 – Séries de bac et moyennes d'accès à la formation pour chaque 1^{ère} année d'inscription:

	Moyenne d'accès du bac			S	éries du ba	С	
	Maths +	Soi ovn	Soi ovo	Maths	Tech. M.	G. Meca	G. Elec
	Tech. M.	Sci. exp.	Sci. exp.	iviati is	i eci i. ivi.	G. Meca	G. Elec
2010-2011	12.3	13.73					
2011-2012	11.98	12.71	87.68%	7.14%	5.17%	-	-
2012-2013	10.82	11.87	62.84%	3.30%	7.19%	6.22%	7.78%
2013-2014	10.76	11.84	77.35%	10.45%	12.19%	-	-
2014-2015	10.05	10.03	90.76%	8.03%	-	0.8%	0.4%

C.2.3 – Choix des étudiants pour cette formation (choix 1,2...etc.) :

C.2.3.1 Choix à la première inscription en 1ère année :

Choix	2012-2013	2013-2014	2014-2015
1	5.00%	17.05%	15.93%
2	1.67%	10.23%	9.73%
3	13.33%	6.25%	11.50%
4	16.67%	6.82%	10.18%
5	6.67%	9.09%	8.85%
6	10.00%	7.39%	6.64%
7	8.33%	5.68%	9.29%
8	8.33%	9.66%	6.64%
9	8.33%	5.11%	8.85%
10	3.33%	1.14%	6.64%
11	18.33%	21.59%	5.75%

C.2.3.2 Choix lors de l'accès au niveau L2 :

Choix	2010-2011	2011-2012	2012-2013	2013-2014	2014-2015
1	38%	42%	45%	41%	73%
2	42%	33%	27%	30%	27%
3	20%	25%	28%	29%	0%

C.2.3.3 Choix lors de l'accès au niveau L3:

Choix	2010-2011	2011-2012	2012-2013	2013-2014	2014-2015
1	100%	100%	100%	100%	100%
2	0%	0%	0%	0%	0%
3	0%	0%	0%	0%	0%

C.2.4 – Taux d'enseignements effectivement réalisé (cours, TD et TP) en volume horaire par année:

	Volum	e horaire	Global	Volume effectivement réalisé			
Année	Cours	TD	TP	С	TD	TP	
2010-2011	1240	460	310	1120 à 1180	415 à 440	310	
2011-2012	1240	460	310	1140 à 1200	425 à 450	310	
2012-2013	1240	460	310	1160 à 1220	430 à 455	310	
2013-2014*	1240	460	310	930 à 990	345 à 370	310	

^(*) L'année 2013-2014 a connu une grève des étudiants d'une dizaine de semaine, difficilement rattrapée.

C.2.5 – Taux de réussite par année:

	2010-2011	2011-2012	2012-2013	2013-2014
Taux de réussite L1	54.98%	50.74%	54.63%	44.28%
Taux de réussite L2	73.27%	70.22%	79.33%	68.54%
Taux de réussite L3	96.67%	93.12%	92.55%	95.68%

C.2.6 – Stages d'étudiants (préciser le nombre de stages par étudiant, leurs natures, la contribution effective du secteur utilisateur dans ces stages):

Au minimum, un stage par étudiant doit être réalisé durant son cursus ; des visites pédagogiques ciblées sont couramment programmées dans le milieu industriel régional et national.

L'étudiant doit rédiger un rapport de synthèse dans lequel il décrit :

- Les tâches qui lui ont été confiées.
- Le déroulement de son stage / de sa visite.
- -La description des processus technologiques mises en œuvre pour la fabrication du produit concerné.

C.2.7 – Projets de fin d'Etudes (précisez la nature des thèmes proposés par rapport à la spécialité de la formation):

Les thèmes des projets de fin d'études proposés par les membres de l'équipe de formation sont en corrélation avec les objectifs de la formation. Ils couvrent un large domaine d'intérêt :

- Etude de la transformation et la mise en forme des différents matériaux (fusion, frittage, déformation plastique, usinage....).
- Etude des divers traitements des matériaux (trempe, recuit,...).
- Caractérisation physique, chimique et mécanique des matériaux...

C.2.8 – Employabilité des diplômés (préciser taux des diplômés employés, dans quels secteurs par rapport à leur spécialisation, dans quelles régions par rapport à leur lieu d'habitation, formation:

Dans l'état actuel, nous ne disposons pas de taux précis d'employabilité, vu qu'une partie des sortants de l'institut regagnent leurs villes de résidence. Certains indicateurs (demande d'authentification de diplôme par l'employeur, informations privées...) montrent que le recrutement de nos diplômés est assuré à travers tout le territoire national et dans différents secteurs :

- 1- Entreprises industrielles publiques et privés :
- Unité Almoule SETIF
- ENAMC El-eulma
- ENTPL El-eulma
- BCR Ain el Kebira
- Cimenterie Ain el Kebira
- Etablissement Boulanouar (commande numérique)
- ENAVA Jijel
- SOMEMI (commande numérique) Jijel
- SAMSUNG Sétif
- ALEMO Constantine
- IRIS Sétif
 - Safcer Sétif
- 2- Fonctions publiques:
 - -Education nationale (enseignement)
 - Enseignement supérieur (laboratoires, recherche)
 - Enseignement professionnel (enseignement)
 - Sureté et défense nationales
 - Ministère de transport (expertise véhicule et contrôle technique)
- 3- Fonctions privées à travers la création d'entreprises privées.

D - Motivation et objectives de la réouverture de la Licence:

La reconduction de la formation est à motiver. Cette partie est consacrée à un exposé des motifs qui pourra être détaillé en fonction des filières et/ou spécialités abordées. Quels sont les objectifs principaux de la reconduction de la Licence (bilan pédagogique jugé positif par les responsables de la formation, taux d'employabilité, recherche développement).

Les matériaux occupent une grande partie des activités industrielles et scientifiques. Depuis quelques années, les activités économiques et industrielles et de recherche scientifique, dans notre pays, ont connue une évolution progressive qui s'est accompagnée d'un besoin aux compétences humaines et au savoir faire dans le domaine de la science et le génie de matériaux. De plus, et après l'exercice de quatre années certains constats positifs ont été faits :

- Le niveau requis des bacheliers recrutés dans le cadre de cette formation à caractère national en sa qualité de pôle d'excellence, le nombre important d'enseignants de rang magistral et les moyens disponibles (à l'intérieur et l'extérieur de l'institut) assurent une formation de qualité;
- La mise à disposition des laboratoires de recherche de l'institut de leurs moyens humain et matériel au profit des impétrants ;
- L'implication des entreprises socio-économiques dans la formation en matière de stage d'ouvrier et de maitrise ;
- L'excellente relation entre l'institut et les entreprises pour d'éventuels recrutements ;

Pour ces raisons, l'équipe pédagogique a dressé un bilan positif de la formation.

E - Position de la Licence:

Dans cette partie la configuration globale de la formation est présentée. Il s'agit de mettre en évidence la position de la formation dans un schéma global avec: identification des conditions d'admissibilité à la formation, passerelle vers d'autres parcours, capacité maximale d'accueil (60 au minimum).

Les conditions d'accès à la formation en L2 <u>avec les conditions d'accès du bac à la filière</u> sont :

- 1ST
- 1SM (avec équivalence)

La condition d'accès à la formation en L3 <u>avec les conditions d'accès du bac à la filière</u> est:

- 2 ST (avec l'acquisition de l'unité fondamentale de spécialité)

Cette licence (Technologie des matériaux) permettra l'accès aux masters disponibles au niveau de notre institut : Mécanique des Matériaux, mécanique fine. Les titulaires de la licence "Technologie des matériaux" pourront, également, poursuivre leurs masters dans l'université de Sétif ou l'université algérienne dans les domaines de la science et le génie des matériaux.

F - Profils et compétences visés: (Diplômes conférés, Compétences conférées)

- Cette formation permettra d'acquérir des connaissances scientifiques et techniques suffisantes pour appréhender le comportement des matériaux pendant la transformation ou l'usage.
- Maîtriser les techniques d'analyse, et les moyens de caractérisation (physique, chimique, mécanique...).
- Maitriser le choix et l'usage des matériaux.

En outre, elle permet aux futurs étudiants formés :

- L'intégration dans des équipes de recherche dans les domaines couverts par cette formation.
- L'analyse, l'étude et le développement des matériaux.
- Le choix et l'optimisation des procédés technologiques de mise en forme
- La maîtrise de technologie et connaissances théoriques et pratiques dans le domaine des matériaux
- L'acquisition de méthodes de travail pour la conduite et le suivi de projets de recherche et de développement.
- L'autoformation continue.

G - Potentialités nationales d'employabilité:

L'employabilité est l'élément moteur de l'ouverture de la formation et représente l'indicateur principal de la réussite du projet de formation. A ce titre, les points suivants doivent être précisés: secteurs d'employabilité des diplômés au niveau national et international, conventions signées avec le secteur socio-économique, possibilités de stages dans les secteurs utilisateurs.

Les secteurs employeurs des diplômés de la licence technologie des matériaux sont :

Secteur industriel publique et privé local, régional ou national; Exemple : cimenteries, unités de transformation des plastiques, recyclage des déchets, usines de céramiques et sanitaires, de fonderie, de transformation du verre, de fabrication mécanique....)

- Fonctions publiques (éducation nationale, enseignement supérieur, enseignement professionnel, sureté et défense nationales...)
 - -Secteur des mines.
 - -Secteur de l'agriculture.

Les Diplômés d'une licence en Technologie des matériaux trouveront leur place dans:

- Les bureaux d'études de conception, d'outillage ou d'installation,
- Les services et laboratoires de contrôles, d'essais, de caractérisation des matériaux
- Les ateliers de production, aux postes de coordination, de gestion, d'entretien,
- Les services techniques divers ainsi que dans les équipes d'achat, de vente, d'aprèsvente
- Les ateliers des divers secteurs économiques mettant en œuvre les matériaux.

H - Encadrement pédagogique:

Liste des intervenants (préciser spécialité- grade-permanents –vacataires-associés-) Taux encadrement préconisé (Enseignant/étudiant) dans la spécialité.

Nom,	prénom	Diplôme graduation	Diplôme de spécialité (Magister, doctorat)	Grade	Matière à enseigner	Emargement
Zegadi	Rabah	Ingénieur	Doctorat	Pr	Mécanique de précision	(Jul
Hamidouche	Mohamed	Ingénieur	Doctorat	Pr	Matériaux Innovants	#
Bouaouadja	Nourredine	Ingénieur	Doctorat	Pr	Matériaux	08
Ouakdi	El-hadj	Ingénieur	Doctorat	Pr	Matériaux	500
Louahdi	Rachid	Ingénieur	Doctorat	Pr	Anglais technique Matériaux	
Bouamama	Larbi	Ingénieur	Doctorat	Pr	Mesure et contrôle non destrctif	April 1
Bouzid	Djamel	Ingénieur	Doctorat	Pr	Mécanique de précision	21)
Boudoukha	Hassina	Ingénieur	Doctorat	Pr	Mécanique de précision	Buy
Loucif	Kamel	Ingénieur	Doctorat	Pr	Matériaux	Jour
Hamouda	Abdelatif	Ingénieur	Doctorat	Pr	Mesure électrique	Hars-
Osmani	Hocine	Ingénieur	Doctorat	Pr	Matériaux et Comportement	I who are

Felkaoui	Ahmed	Ingénieur	Doctorat	Pr	Mécanique de précision	4
Benbahouche	e Saci	Ingénieur	Doctorat	Pr	Mécanique de précision	. wiet
Keskes	Boualem	Ingénieur	Doctorat	MCA	Mécanique de précision	080
Djeddou	Ferhat	Ingénieur	Doctorat	MCA	Mécanique de précision	Ruddourd
Benghalem	Nafissa	Ingénieur	Doctorat	MCA	Mécanique de précision	Deugle
Chorfa	Abdallah	Ingénieur	Doctorat	MCA	Matériaux	dif
Kolli	Mostafa	Ingénieur	Doctorat	MCA	Matériaux	Jued'
Abdeslem	Saâd	Ingénieur	Doctorat	MCA	Matériaux	
Smata	Lakhdar	Ingénieur	Doctorat	MCA	Mécanique de précision	Pusts
Zitouni	Brahim	Ingénieur	Doctorat	МСВ	Usinage	
Soualem	Azedine	Ingénieur	Doctorat	MCA	Mise en forme	ex-
Roumili	Fouad	Ingénieur	Doctorat	МСВ	Mécanique de précision	No
Belkhir	Nabil	Ingénieur	Doctorat	MCA	Procédés d'usinage	Ol.
Benali	Farouk	Ingénieur	Doctorat	МСВ	FAO CAO	Roll
Meguelati	Saïd	Ingénieur	Doctorat	МСА	Ajustage	to.

Mahgoune Hafidha	Ingénieur	Doctorat	МСВ	Mécanique de précision	last
Ghabrour Sahraoui	Ingénieur	Magister	MAA		San
Rahmani Mohamed	Ingénieur	Magister	MAA		W-
Semchedine Fouzi	Ingénieur	Doctorat	MCA	Informatique	Sex
Bourahli Med El-hadj	Ingénieur	Doctorat	MCA	Mécanique de précision	Donneli
Fedala Semchedine	Ingénieur	Magister	MAA	Informatique	ful
Demmouche Mourad	Ingénieur	Magister	MAA	FAO CAO	on

^{*} Permanent, vacataire, associé
** Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

I - Supports et équipements pédagogiques:

Spécifier les Laboratoires pédagogiques avec leurs équipements-et capacités d'accueils-particulièrement ceux relatifs à la formation proposée (modules de spécialité), moyens audio-visuels, spécifier le fonds documentaire relatif à la formation proposée.

LABORATOIRE 1 Intitulé du laboratoire : CONCEPTION

Capacité en étudiants : 20

N°	Intitulé de l'équipement	Nombre	observations
1	Moteur pas à pas	1	Fonctionnel
2	Appareil d'étude de Frottement	1	Fonctionnel
3	Montage d'étude d'ajustage	1	Fonctionnel
4	Mesureur de contrainte par	1	Fonctionnel
	photoélasticimétrie		
5	Chaîne de mesure des vibrations	1	Fonctionnel
6	Logiciels de conception assistée	1	Fonctionnel
	par ordinateur: Solidworks,		
	Topsolid		

LABORATOIRE 2

Intitulé du laboratoire : Façonnage des composants optiques

Capacité en étudiants : 20

N°	Intitulé de l'équipement	Nombre	observations
1	Tronçonneuse à meule diamantée	1	Fonctionnel
	pour verre		
2	Tour pour verre	1	Fonctionnel
3	Meuleuse de lentilles	1	Fonctionnel
4	Rodeuse	1	Fonctionnel
5	Polisseuses	2	Fonctionnel
6	Dispositif de dépôt de couches	1	Fonctionnel
	minces		
7	Microscopes optiques	1	Fonctionnel

LABORATOIRE 3 Intitulé du laboratoire : METROLOGIE

Capacité en étudiants : 30

N°	Intitulé de l'équipement	Nombre	observations
1	Balance automatique	1	Fonctionnel
2	Mesureurs de température	1	Fonctionnel
3	Enregistreur	1	Fonctionnel
4	Contrôleur de longueur	1	Fonctionnel
5	Projecteur de profil	1	Fonctionnel
6	Mesureur 2 cordonnées	1	Fonctionnel
7	Mesureur 3 cordonnées	1	Fonctionnel
8	Contrôleur de d'angle	1	Fonctionnel
9	Mesureur de Rugosité	1	Fonctionnel
10	Contrôleur d'engrenage	1	Fonctionnel
11	Contrôleur de planéité	1	Fonctionnel

LABORATOIRE 4 Intitulé du laboratoire : MATERIAUX

Capacité en étudiants : 20

N°	Intitulé de l'équipement	Nombre	observations
1	Duromètres	1	Fonctionnel
2	Microscopes métallographiques	1	Fonctionnel
3	Machines d'essais mécaniques	1	Fonctionnel
	universelles		
4	Pendule de Charpy	1	Fonctionnel
5	Fours	2	Fonctionnel
6	Banc de contrôle par ultrasons	1	Fonctionnel
7	Divers montages (choc thermique,		Fonctionnel
	Barre d'Hopkinson, Tribomètre,		
)		

LABORATOIRE 5 Intitulé du laboratoire : INFORMATIQUE

Capacité en étudiants : 40

N°	Intitulé de l'équipement	Nombre	observations
1	Logiciels de programmation		Fonctionnel
	scientifique		
	Pascal, C++, Matlab, Logiciel SW		

	(CAO)		
2	Micro-ordinateurs	40	Fonctionnel
3	Réseau + Internet	40	Fonctionnel

LABORATOIRE 6 Intitulé du laboratoire : MACHINES A COMMANDE NUMERIQUE

Capacité en étudiants : 10

N°	Intitulé de l'équipement	Nombre	observations
1	Fraiseuse à commande	1	Fonctionnel
	numérique		
2	Tour à commande numérique	1	En panne
3	Logiciels de FAO ; SURFCAM,	2	Fonctionnel
	CAMWORKS		

LABORATOIRE 7 Intitulé du laboratoire : HALL DE TECHNOLOGIE

Capacité en étudiants : 30

N°	Intitulé de l'équipement	Nombre	observations
1	Fraiseuses (divers plateaux	06	Fonctionnel
	diviseurs + et plateaux diviseurs		
	circulaires + un dispositif à		
	mortaiser)		
2	perceuses	05	Fonctionnel
3	Taraudeuse	01	Fonctionnel
4	Affuteuse de fraises	03	Fonctionnel
5	Rectifieuse plane	02	1 Fonctionnelle 1 en
			panne
6	Rectifieuse cylindrique	02	En panne
7	Soudeuse par point	02	Fonctionnel
8	Machine par usinage	01	Fonctionnel
	électrochimique		
9	Presses hydrauliques pour	03	Fonctionnel
	découpage, pliage, emboutissage		
10	Machine d'usinage par	01	Fonctionnel
	électroérosion		
11	Raboteuses	01	Fonctionnel
12	Tour parallèle long: 1,5m	05	Fonctionnel
13	Tour parallèle géant long: 3m	01	Fonctionnel
14	Affuteuse des outils en carbure	01	Fonctionnel

- J Structures de recherche de soutien (internes et/ou externes): Structures de spécialité (Intitulé- responsable-Date d'agreement-thèmes développés), autres structures.
 - Laboratoire des matériaux non métalliques : Responsable : Prof. N. Bouaouadja, agrée en 2001. Les thèmes développés concernent la science et le génie des matériaux non métalliques: Verres, céramiques et composites.
 - Laboratoire de physique et des matériaux métalliques : Responsable : Prof. E. Ouakdi, agrée en 2001. Les thèmes développés concernent les matériaux métalliques ferreux et non ferreux.
 - Unité de recherche des matériaux émergents : Responsable : Prof. M. Hamidouche, agréée en 2011. Les thèmes développés concernent les matériaux émergents de diverses natures : céramiques avancées, polymères, couches minces, alliages spéciaux...
 - Laboratoire de Mécanique de précision appliquée : Responsable : Prof. R. Zegadi, agrée en 2001. Les thèmes développés concernent la conception et la fabrication mécaniques.

K - Participation du secteur utilisateur dans la Licence (Préciser à quel niveau de la formation le secteur utilisateur intervient- enseignements-stages d'étudiants-projets de fin d'études-Conventions)

Dans le cadre de la formation, le secteur utilisateur intervient dans les stages des étudiants et dans les sorties pédagogiques.

Le secteur utilisateur intervient, également, dans la finalisation de certains projets de fin d'études.

L - Organisation de	la Licence:
L.1. Fiche d'orga	nisation semestrielle des enseignements
(Prière de	présenter les fiches des 6 semestres)

Semestre 1:

Unités	Matières	lits	cient	Volume horaire hebdomadaire		VHS	a a ste	Mode d'évaluation		
d'enseignement	Intitulé	Crédits	Coefficient	Cours	TD	TP	(14-16 semaines)	Autre*	Mode d'é Contrôle Continu 40% 40% 40% 100% 40%	Examen
UE Fondamentale	Mathématique 1	6	3	3h00	1h30		67h30	82h30	40%	60%
Code : UEF 1.1 Crédits : 18	Physique 1	6	3	3h00	1h30		67h30	82h30	40%	60%
Coefficients: 9	Structure de la matière	6	3	3h00	1h30		67h30	82h30	40%	60%
	TP physique 1	2	1			1h30	22h30	27h30	100%	
UE Méthodologique Code : UEM 1.1	TP Chimie 1	2	1			1h30	22h30	27h30	100%	
Crédits : 9 Coefficients : 5	Informatique 1	4	2	1h30		1h30	45h00	55h00	40%	60%
	Méthodologie de la rédaction	1	1	1h00			15h00	10h00		100%
UE Découverte Code : UED 1.1 Crédits : 1 Coefficients : 1	Les métiers en sciences et technologies 1	1	1	1h30			22h30	2h30		100%
UE Transversale Code: UET 1.1	Langue française 1	1	1	1h30			22h30	2h30		100%
Crédits : 2 Coefficients : 2	Langue anglaise 1	1	1	1h30			22h30	2h30		100%
	Total semestre 1	30	17	16h00	4h30	4h30	375h00	375h00		

^{*}Autres travaux supplémentaires

Semestre 2:

Unités	Matières	lits	cient	Volume horaire hebdomadaire		VHS		Mode d'évaluation		
d'enseignement	Intitulé	Crédits	Coefficient	Cours	TD	TP	(14-16 semaines)	Autre*	Contrôle Continu 40% 40% 40% 100% 40%	Examen
UE Fondamentale	Mathématique 2	6	3	3h00	1h30		67h30	82h30	40%	60%
Code : UEF 1.2 Crédits : 18	Physique 2	6	3	3h00	1h30		67h30	82h30	40%	60%
Coefficients: 9	Thermodynamique	6	3	3h00	1h30		67h30	82h30	40%	60%
	TP physique 2	2	1			1h30	22h30	27h30	100%	
UE Méthodologique Code : UEM 1.2	TP Chimie 2	2	1			1h30	22h30	27h30	100%	
Crédits : 9 Coefficients : 5	Informatique 2	4	2	1h30		1h30	45h00	55h00	40%	60%
	Méthodologie de la présentation	1	1	1h00			15h00	10h00		100%
UE Découverte Code : UED 1.1 Crédits : 1 Coefficients : 1	Les métiers en sciences et technologies 2	1	1	1h30			22h30	2h30		100%
UE Transversale Code : UET 1.1	Langue française 1	1	1	1h30			22h30	2h30		100%
Crédits : 2 Coefficients : 2	Langue anglaise 1	1	1	1h30			22h30	2h30		100%
	Total semestre 2	30	17	16h00	4h30	4h30	375h00	375h00		

^{*}Autres travaux supplémentaires

Semestre 3:

Unités	Matières	Jits	Coefficient	Volume horaire hebdomadaire		VHS	A . *	Mode d'évaluation		
d'enseignement	Intitulé	Crédits	Coeffi	Cours	TD	TP	(14-16 semaines)	Autre*	Contrôle Continu	Examen
	Mathématiques 3	6	3	3h00	1h30		67h30	82h30	40%	60%
UE Fondamentale Code: UEF 2.1	Ondes et Vibrations	4	2	1h30	1h30		45h00	55h00	40%	60%
Crédits : 18 Coefficients : 9	Mécanique des fluides	4	2	1h30	1h30		45h00	55h00	40%	60%
	Mécanique Rationnelle	4	2	1h30	1h30		45h00	55h00	40%	60%
	Probabilités et Statistique	4	2	1h30	1h30		45h00	55h00	40%	60%
UE Méthodologique Code : UEM 2.1 Crédits : 9 Coefficients : 5	Informatique 3	2	1			1h30	22h30	27h30	100%	
	Dessin technique	2	1			1h30	22h30	27h30	100%	
	TP Ondes et Vibrations	1	1			1h00	15h00	10h00	100%	
UE Découverte Code : UED 2.1	Technologie de base	1	1	1h30			22h30	2h30		100%
Crédits : 2 Coefficients : 2	Métrologie	1	1	1h30			22h30	2h30		100%
UE Transversale Code : UET 2.1 Crédits : 1 Coefficients : 1	Anglais technique	1	1	1h30			22h30	2h30		100%
	Total semestre 3	30	17	13h30	7h30	4h00	375h00	375h00		

^{*}Autres travaux supplémentaires

Semestre 4:

Unités	Matières	lits	cient	_	ume hor bdomada	-	VHS		Mode d'é	valuation
d'enseignement	Intitulé	Crédits	Coefficient	Cours	TD	TP	(14-16 semaines)	Autre*	Contrôle Continu	Examen
UE Fondamentale Code : UEF 2.2	Notions d'Optique	4	2	1h30	1h30		45h00	55h00	40%	60%
Crédits : 6 Coefficients : 3	Sciences des Matériaux	2	1	1h30			22h30	27h30		100%
UE Fondamentale	Mathématique 04	4	2	1h30	1h30		45h00	55h00	40%	60%
Code : UEF 2.2 Crédits : 12	Méthodes numériques	4	2	1h30	1h30		45h00	55h00	40%	60%
Coefficients : 6	Résistance des Matériaux	4	2	1h30	1h30		45h00	55h00	40%	60%
	TP Optique	2	1			1h30	22h30	27h30	100%	
UE Méthodologique	TP Sciences des Matériaux	2	1			1h30	22h30	27h30	100%	
Code : UEM 2.2 Crédits : 9	Dessin assisté par ordinateur	2	1			1h30	22h30	27h30	100%	
Coefficients : 5	TP Méthodes Numériques	2	1			1h30	22h30	27h30	100%	
	TP Résistance des Matériaux	1	1			1h00	15h00	10h00	100%	
UE Découverte Code : UED 2.2 Crédits : 2 Coefficients : 2	Opto-Mécanique	2	2			3h00	45h00	5h00		100%
UE Transversale Code : UET 2.2 Crédits : 1 Coefficients : 1	Technique d'expression et de communication	1	1	1h30			22h30	2h30		100%
	Total semestre 4	30	17	9h00	6h00	10h00	375h00	375h00		

^{*}Autres travaux supplémentaires

			ients	Volume horaire hebdomadaire			Volume Horaire		Mode d'évaluation	
Unité d'enseignement	Intitulé	Crédits	Coefficients	Cours	TD	TP	Semestriel (15 semaines)	Autre*	Contrôle Continu	Examen
UE Fondamentale:	Matériaux métalliques	5	4	2h	1h	1h	60h00	40h00	40%	60%
Classes des matériaux Code : UEF 5.1 Crédits : 9 Coefficients : 7	Matériaux non métalliques : verres, céramiques et plastiques	4	3	2h		1h	45h00	55h00	40%	60%
	Moulage et métallurgie des poudres	3	2	1h30			32h30	67h30	40%	60%
	Usinage	4	3	2h		2h	40h	60h00	40%	60%
	Mise en forme par déformation	3	2	1h30			32h30	67h30	40%	60%
UE Méthodologique :	Assemblages permanents	3	2	1h30	1h		37h30	17h30	40%	60%
Technologie d'assemblage Code : UEM 5 Crédits : 6 Coefficients : 4	Assemblages démontables	3	2	1h30	1h		37h30	17h30	40%	60%
UE Transversale Code : UET 5	Métrologie appliquée	3	2	1h30		1h	37h30	17h30	40%	60%
Crédits : 5 Coefficients : 4	Anglais technique	1	1	1h30			22h30	12h30		100%
	Informatique appliquée	1	1	2h			30h	20h00		100%
Total semestre 5		30	22		25h00	1	375h00	375h00		

			ents	Volume horaire hebdomadaire			Volume Horaire		Mode d'évaluation	
Unité d'enseignement	Intitulé	Crédits	Coefficients	Cours	TD	TP	Semestriel (15 semaines)	Autre*	Contrôle Continu	Examen
UE Fondamentale : Propriétés et	Propriétés mécaniques des matériaux	4	3	2h			55h00	45h00	40%	60%
	Propriétés physico-chimiques des matériaux	4	3	2h	3h	2h	55h00	45h00	40%	60%
Code : UEF 6 Crédits : 12 Coefficients : 9	Analyse et caractérisation	4	3	2h			55h00	45h00	40%	60%
	Elaboration et mise en forme des verres	2	1	1h30			22h30	27h30		100%
environnement Code : UEM 6.1	Choix des matériaux	2	1	1h30			22h30	27h30		100%
Crédits :6 Coefficients : 3	Recyclage	2	1	1h30			22h30	27h30		100%
UE Méthodologique : Technologie des	Matériaux composites	3	2	2h			35h00	20h00	40%	60%
	Matériaux innovants	2	1	1h30		1h	27h30	27h30	40%	60%
Creats: X	Matériaux pour l'électronique et l'électrotechnique	3	2	2h		111	35h00	20h00	40%	60%
Stage Pratique, Mini Projet, Crédits : 4 Coefficients :2	Stage pratique ou mini projet	4	2		3 h		45h	90h00	100%	
Total semestre 6		30	19		25h00		375h00	375h00		

Récapitulatif global de la formation : (indiquer le VH global séparé en cours, TD, pour les 06 semestres d'enseignement, pour les différents types d'UE)

UE VH	UEF	UEM	UED	UET	Projet Individuel	Total	
Cours	765	262,5	90	187,5	00	1305	
TD	360	97,5	00	00	00	457,5	
TP	90	262,5	00	15	00	367,5	
Travail personnel	00	00	00	00	45	45	
Autre (préciser)	00	00	00	00	00	00	
Total	1215	622,5	90	202,5	45	2177,5	
Crédits	100	52	8	16	4	180	
% en crédits pour chaque UE	55 / 9	28.59 %	4.13 %	9.30 %	2.07 %	100 %	

L.2 - Fiches d'organisation des unités d'enseignement (Etablir une fiche par UE)
(Etabili une liche par OE)

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Fondamentale UEF 5.1

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 9 crédits Composante 1: 5 crédits, Coefficient: 4 Composante 2: 4 crédits, Coefficient: 3
Description des composantes (matières)	Composante 1 : Matériaux métalliques Composante 2 : Matériaux non métalliques : verres, céramiques et plastiques

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Fondamentale UEF 5.2

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 10 crédits Composante 1: 3 crédits, Coefficient: 2 Composante 2: 4 crédits, Coefficient: 3 Composante 3: 3 crédits, Coefficient: 2
Description des composantes (matières)	Composante 1: Moulage et métallurgie des poudres Composante 2: Usinage Composante 3: Mise en forme par déformation

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Méthodologique UEM 5

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	Cours: 45 h TD: 30 h TP: 00 h Travail personnel: //
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 6 crédits Composante 1: 3 crédits, Coefficient: 2 Composante 2: 3 crédits, Coefficient: 2
Description des composantes (matières)	Composante 1 : Assemblages permanents Composante 2 : Assemblages démontables

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Transversal UET 5

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	Cours: 75 h TD: 00 h TP: 15 h Travail personnel: //			
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 5 crédits Composante 1: 3 crédits, Coefficient: 2 Composante 2: 1 crédit, Coefficient: 1 Composante 3: 1 crédit, Coefficient: 1			
Description des composantes (matières)	Composante 1 : Métrologie appliquée Composante 2 : Anglais technique Composante 3 : Informatique appliquée			

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Fondamentale UEF6

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 12 crédits Composante 1: 4 crédits, Coefficient: 3 Composante 2: 4 crédits, Coefficient: 3 Composante 3: 4 crédits, Coefficient: 3
Description des composantes (matières)	Composante 1 : Propriétés des matériaux Composante 2 : propriétés physicochimiques des matériaux Composante 3 : Analyse et caractérisation

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Méthodologique UEM 6.1

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	Cours: 67.5 h TD: 00 h TP: 00 h Travail personnel: //			
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 6 crédits Composante 1: 2 crédits, Coefficient: 1 Composante 2: 2 crédits, Coefficient: 1 Composante 3: 2 crédits, Coefficient: 1			
Description des composantes (matières)	Composante 1: Elaboration et mise en forme des verres Composante 2: Choix des matériaux Composante 3: Recyclage			

(Etablir une fiche par UE)

Libellé de l'UE : Unité d'Enseignement Méthodologique UEM 6.2

Filière: Optique et mécanique de précision Spécialité : Technologie des matériaux

Répartition du volume horaire de l'UE et de ses composantes (matières)	Cours: 82.5 h TD: 00 h TP: 15 h Travail personnel: //
Crédits et coefficients affectés à l'UE (et à ses composantes)	UE: 8 crédits Composante 1: 3 crédits, Coefficient: 2 Composante 2: 2 crédits, Coefficient: 1 Composante 3: 3 crédits, Coefficient: 2
Description des composantes (matières)	Composante 1 : Matériaux composites Composante 2 : Matériaux innovants Composante 3 : Matériaux pour l'électronique et l'électrotechnique

(Etablir une fiche par UE)

Libellé de l'UE : Unité projet individuel

Filière: Optique et mécanique de précision

Spécialité : Technologie des matériaux

Répartition du Volume Horaire Semestriel de l'U.E. et de ses Composantes	Cours: 00h T.D.: 00h T.P.: 00h Travail Personnel: 45 h Autres (stages): //
Crédits affectés à l'U.E (et à ses Composantes)	U.E. = 4 crédits Coefficient : 2

L.3 - Programme détaillé par matière (1 fiche détaillée par matière)

UE: Fondamentale 1 (Classes des matériaux)

Matière 1 : Matériaux métalliques

Crédits:5

Coefficient:4

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- Connaître les différents matériaux métalliques industriels, leurs structures, leurs propriétés et les procédés d'élaboration.
- Définir les différents traitements des métaux et savoir pratiquer un traitement thermique.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Chimie1, Génie des matériaux

Contenu de la matière :

- 1. Nature des matériaux métalliques :
 - Métaux dans le tableau périodique
 - Liaisons métalliques,
 - Caractéristiques de l'état métallique

2. Elaboration des matériaux métalliques

- Elaboration des alliages ferreux
- Elaboration des alliages non ferreux

3. Structure des métaux :

- Préparations métallographiques
- Observations microscopiques
- Solutions solides
- Défauts dans les métaux
- Diffusion
- Structures types

4. Propriétés mécaniques :

- Élasticité
- Plasticité
- Notions de contrainte et de déformation
- Essais mécaniques usuels (traction, flexion, dureté, fatigue, fluage)
- Contrôle non destructif des structures métalliques (rayons X, ultrasons, émission acoustique, magnétoscopie)

5. Propriétés physiques :

- Thermiques
- Électriques
- Électroniques
- Magnétiques

6. Diagrammes de phase :

- Analyse thermique
- Notions de thermodynamique des diagrammes
- Polymorphisme
- Diagrammes binaires
- Diagramme fer-carbone
- Diagrammes ternaires
- Exploitations des diagrammes de phase

7. Traitements thermiques et thermochimiques :

- Changements de phase
- Recuit
- Normalisation
- Trempe
- Revenu
- Cémentation
- Nitruration
- Carbonitruration
- Revêtements des métaux

8. Dégradation des matériaux métalliques :

- Oxydation
- Corrosion
- Méthodes de protection contre la corrosion
- Usure abrasive
- Usure érosive

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- Ashby & Jones, Matériaux (1&2), Ed. Dunod, 1991.
- W.D.Mcallister Jr., Science et Génie des Matériaux, Ed. Dunod, 2001.
- Jean-Paul Bailon, Jean-Marie Dorlot, Des Matériaux, Ed. Presses Internationales Polytechnique, 2004.

Semestre: 5

UE: Fondamentale 1 (Classes des matériaux)

Matière 2 : Matériaux non métalliques

Crédits :4 Coefficient :3

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Identifier les différents matériaux céramiques, verres, plastiques et composites et connaître leurs structures, leurs propriétés essentielles et les principales utilisations industrielles.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Chimie1, Génie des matériaux

Contenu de la matière :

- 1. Le Verre:
 - 1.1- Définition du verre
 - 1.2- Structure du verre
 - 1.3- Compositions chimiques
 - 1.4- Verres industriels
 - 1.5- Verres optiques
 - 1.6- Mélange vitrifiable

- 1.7- Recuisson
- 1.8- Propriétés du verre :
 - Propriétés optiques
 - Propriétés mécaniques
 - Propriétés thermiques,
 - Propriétés chimiques
- 1.9- Usinage du verre sans enlèvement de matière
- 1.10- Usinage avec enlèvement de matière
 - Tournage
 - Tronçonnage
 - Meulage
 - Rodage
 - Polissage
 - Centrage
- 1.11- Revêtement du verre :
 - Evaporation sous vide
 - Pulvérisation cathodique
 - Procédés chimiques
- 1.12- Les verres spéciaux

2. Matières plastiques :

- 2.1- Composition chimique
- 2.2- Les thermoplastiques
- 2.3- Les thermodurcissables
- 2.4- Les élastomères
- 2.5- Propriétés et mise en forme

3. Les céramiques

- 3.1- Définitions
- 3.2- Classes
- 3.3- Propriétés (mécaniques, physiques, chimiques)
- 3.4- Elaboration:
 - Poudre
 - Façonnage (coulage en barbotine, injection de pate plastique, pressage uniaxial, isostatique...)
 - Frittage (Mécanismes, Paramètres et leurs effets...)
- 3.5- Les céramiques techniques

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- J. Zarzicky, le verre et l'état vitreux, 1982.
- -H. Scholze, le Verre: Nature, structure et propriétés, Institut du verre de Paris, 1980.
- -J. Barton et C. Guillemet, Le verre science et technologie, EDP Sciences, 2005.
- -W.D. Callister Jr., Science et Génie des Matériaux, Ed. Dunod, 2001.
- -Jean-Paul Bailon, Jean-Marie Dorlot, Des Matériaux, Ed. Presses Internationales Polytechnique, 2004.
- -P. Boch, J. P. Bonnet, A. Bouquillon, T. Chartier, J. M. Gaillard, P. Goursat, Matériaux et processus céramiques, Edition Hermes Science, 2001.
- W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, second edition, John Wiley & Sons, 1975.

Semestre: 5

UE: Fondamentale 2 (Processus de fabrication)

Matière 1 : Moulage et métallurgie des poudres

Crédits :3 Coefficient :2

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- -Connaitre les différentes techniques de moulage.
- -Connaitre les différentes étapes pour l'élaboration des pièces frittées.
- -Maitriser la conception des pièces moulées et des pièces frittées.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Génie des matériaux, dessin technique.

Contenu de la matière :

- 1. Introduction
- 2. Avantages et inconvénients du procédé de moulage
- 3. Matériaux de moulage et de noyautage :
 - Sables
 - Liants
 - Produits annexes

4. Différents procédés de moulage :

- -Moulage en moules non permanents :
- Moulage en sable
- Moulage en carapace (Procédé Croning)
- Moulage de précision à la cire perdue
- Moulage au trousseau
- Moulage par centrifugation
- Moulage au renversée
- Moulage en moules permanents :
- Moulage en coquille par gravité
- Moulage en coquille sous pression
- 5. Règles pour la conception des pièces moulées.
- 6. Avantages et inconvénients de la métallurgie des poudres
- 7. Préparation des poudres (broyage ou réduction, atomisation, tamisage, dosage, mélange)
- 8. Mise en forme
- 9. Frittage:
 - Frittage en phase solide
 - Frittage en phase liquide
- 10. Effet des paramètres de compactage et de frittage sur les propriétés des pièces frittées:
 - Effet sur les propriétés physiques (densité, porosité...).
 - Effet sur les propriétés mécaniques (résistance mécanique, module d'élasticité…)

11. Règles pour la conception des pièces frittées

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- J. Barralis, G. Maeder, Précis métallurgie, Ed. Nathan, 2005.

- R. Dietrich et al., Précis de construction mécanique, 2. Méthodes, fabrication et normalisation, Ed. Nathan, 1979.
- Pierre CUENIN, Industrie de la fonderie, Techniques de l'Ingénieur, traité Matériaux métalliques, M3500.
- D. BERNACHE-ASSOLLANT, Jean-Pierre BONNET, Frittage : aspects physico-chimiques

Partie 1 : frittage en phase solide, Techniques de l'Ingénieur, AF 6 620.

- M. EUDIER, Fabrication des produits frittés, Techniques de l'Ingénieur, traité Matériaux métalliques, M 864.
- J. P. Bassuet, Cours de l'INSA de Lyon, 1988.
- A. Chevalier, Guide du dessinateur industriel, Ed. Hachette Technique, 1994.

Semestre: 5

UE: Fondamentale 2 (Processus de fabrication)

Matière 2 : Usinage

Crédits :4

Coefficient:3

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- -Connaitre les différents procédés conventionnels et non conventionnels d'usinage.
- -Pouvoir designer les procédés d'usinage nécessaires pour la fabrication d'une pièce mécanique quelconque.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Physique 4, dessin technique.

Contenu de la matière :

1- Notions fondamentales de la coupe des métaux

- Introduction (historique de l'usinage) 1.1.
- 1.2. Mode d'enlèvement de matière et formation des copeaux
 - 1.3. Type de copeaux
 - 1.4. Phénomènes existants en usinage des métaux
 - 1.5. l'outil de coupe
 - 1.6. Usure des outils de coupe et les facteurs influençant
 - 1.7. Paramètres cinématique de coupe
 - 1.8. Effort de coupe
 - 1.9. Surface de la pièce et son état
 - 1.10. La lubrification

2- Tournage

- 2.1. Définition
- 2.2. Principe
- 2.3. Outils de tournage
- 2.4. Modes de tournage
- 2.5. Fixation des pièces et des outils de tournage
- 2.6. Effort de coupe et puissance
- 2.4. Régime de coupe en tournage

3- Fraisage

- 3.1. Définition
- 3.2. Fraisage en opposition
- 3.3. Fraisage en avalent
- 3.4. Modes de fraisage
- 3.5. Outil de fraisage
- ა.ნ. 3.7. 3.6. Effort de coupe et puissance
- Régime de coupe en fraisage
- Tenue de l'outil 3.8.

4- Percage

- 4.1. Définition et principe
- 4.2. Outils de perçages
- 4.3. Montage de l'outil et de la pièce
- 4.4. Paramètres de coupe en perçage

5- Rabotage

- 5.1. Définition et principe
- 5.2. Outils de rabotage

- 5.3. Montage de l'outil et de la pièce
- 5.4. Régime de coupe en rabotage

6- Rectification

- 6.1. Définition
- 6.2. Principe d'enlèvement de matière
- 6.3. Les meules
- 6.4. Paramètres de coupe
- 6.5. État de surface et les facteurs influençant

7- Généralités sur les procédés d'usinage non conventionnel

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- R. Dietrich et al., Précis méthodes d'usinage, Ed. Nathan, 1981.
- J. BEDDOES, M.J. BIBBY, Principles of metal manufacturing processes.
- C. MARTY, J.M. LINARES, Industrialisation des Produits Mécaniques (3) [Hermès, 1999.
- C. Berdin, Chapitre 2 : -Etude générale des phénomènes de coupe, Cours de l'INSA de Lyon, 1976.

Semestre: 5

UE: Fondamentale 2 (Processus de fabrication)

Matière 3 : Mise en forme par déformation

Crédits :3

Coefficient:2

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- Connaitre les différents procédés de fabrication mécanique sans enlèvement de copeaux et maitriser le dimensionnement des pièces et des outils.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Physique 4, dessin technique

Contenu de la matière :

- 1. Généralités sur les procédés de façonnage par déformation
 - 1.1 Introduction
 - 1.2 Principe général des techniques de façonnage par pression
 - 1.3 Présentation des procédés de façonnage par pression (laminage, étirage, filage, forgeage, estampage)
 - 1.4 Application des techniques de façonnage par pression

2 . Forgeage

- 2.1 Introduction
- 2.2 Principe (opération principales: allongement, poinçonnage ...)
 - 2.3 Différentes technique de forgeage
 - 2.4 Outils de forgeage
 - 2.5. Estampage (principe et outillage)
 - 2.6. Refoulement à froid (dans la production de rivets, boulon...)

3. Laminage

- 3.1 Définition
- 3.2 Principe
- 3.3 Outils de laminage (laminoirs lisses et canulés)
- 3.4 Force de laminage
- 3.5 Formes obtenues par laminage

4. Étirage

- 4.1. Définition et principe
- 4.2. Outils d'étirage (filière)
- 4.3. Formes obtenues

5. Pliage

- 5.1. Définition et principe
- 5.2. Type de Pliage (en V et en U)
- 5.3. Effort de pliage
- 5.4. Outils de pliage
- 5.5. Dimensionnement des outils de pliage

6. Emboutissage

- 6.1. Définition et principe
- 6.2. Outils d'emboutissage
- 6.3. Paramètre d'estampage (effort, dimensions...)

Mode d'évaluation : Examen.

Références (Livres et polycopiés, sites internet, etc):

- R. Dietrich et al., Précis méthodes d'usinage, Ed. Nathan, 1981.
- J. BEDDOES, M.J. BIBBY, Principles of metal manufacturing processes.
- C. MARTY, J.M. LINARES, Industrialisation des Produits Mécaniques, Hermès, 1999.

Semestre: 5

<u>UE: Méthodologie (Technologie d'assemblage)</u>

Matière 1 : Assemblages permanents

Crédits:3

Coefficient:2

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- Connaitre l'intérêt et les différentes techniques d'assemblage permanent.
- Dimensionner les assemblages soudés, frettés, rivetés...

- Maitriser le choix d'une technique d'assemblage en fonction des contraintes imposées.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Physique 4, Génie mécanique appliqué, Génie des matériaux, dessin technique, Résistance des matériaux

Contenu de la matière :

- 1. Assemblages par soudage
 - 1.1 Procédés de soudage
 - 1.1.1 Soudage par fusion
 - 1.1.2 Soudage par pression
 - 1.1.3 Soudage par résistance
 - 1.2 Assemblages par soudage hétérogène
 - 1.2.1 Procédés de soudage
 - 1.2.2 Le brasage
- 1.2.3 Contraintes dans les joints brasés et contraintes admissibles
 - 1.3 Soudabilité des métaux
 - 1.4 Soudure en construction mécanique
 - 1.4.1 Genre d'assemblages
 - 1.4.2 Forme des cordons de soudure
 - 1.4.3 Façonnage des assemblages soudés
 - 1.4.2 Calcul et contrôle des assemblages soudés

2. Assemblages par collage

- 2.1 Généralités
- 2.2 Colles industrielles
- 2.3 Choix d'une colle
- 2.4 Conception des joints et applications

3. Assemblages emmanchés et frettés

- 3.1 Fonction et application des assemblages frettés
- 3.2 Définition d'un modèle de calcul : le cylindre à paroi épaisse
- 3.3 Calcul des emmanchements cylindriques
 - 3.3.1 Condition de résistance de l'arbre et du moyeu
 - 3.3.2 Tolérances de l'arbre et du moyeu
 - 3.3.3 Condition de montage
- 3.4 Conception et réalisation

4. Assemblages par déformations plastiques

4.1 Assemblages rivetés

- 4.1.1 Généralités
- 4.1.2 Calcul des rivures chargées par l'effort symétrique
- 4.1.2 Calcul des rivures chargées par l'effort non symétrique
- 4.1.3 Conception et façonnage des assemblages rivetés
- 4.2 Assemblages bordés
- 4.3 Assemblages pliés
- 4.4 Assemblages sertis et autres

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- H.B. Cary, Modern welding technology, Ed. Prentice Hall, 1998.
- Welding Handbook, Ed. American Welding Society, 1991.
- C. Dawes, Laser welding, Ed. McGraw-Hill, 1992.
- H. Schultz, Electron beam welding, Ed. Abington, 1993.
- J. P. Bassuet, Fonction liaison, cours de l'INSA de Lyon, 1988.
- SHIGHLEY, J.E. "Mechanical engineering design". New York : Mc Graw-Hill, 2002.
- DEUTCHMAN, A.D.and als. "Machine design, Theory and Practice". Mc MILLAN, 1975
- AUBLIN, M.et als "Systèmes mécaniques, théorie et dimensionnement". Paris : Dunod, 1995
- Nicolet et Trottet "Eléments de construction" Dunod Université, Bordas Paris
- V.Dobrovolski , K.Zablonski et "Eléments de machines" édition Mir, Moscou

Semestre: 5

UE: Méthodologie (Technologie d'assemblage)

Matière 2 : Assemblages démontables

Crédits :3 Coefficient :2 **Objectifs de l'enseignement** (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- Connaitre et maitriser le dimensionnement des différents assemblages démontables.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Génie mécanique appliqué, Génie des matériaux, dessin technique.

Contenu de la matière :

- 1. Prescriptions fondamentales de la conception mécanique
 - 1.1 Introduction aux méthodologies de conception de produits mécaniques ; processus de conception.
 - 1.2 Charges appliquées aux éléments de constructions :
 - I.2.1 Sollicitations simples et combinées
 - 1.2.2 Critères de résistance et de dimensionnement
- I.2.3 Contraintes admissibles et coefficient de sécurité statique
 - 1.3 Généralités sur les liaisons des pièces mécaniques
 - 1.4 Tolérances et ajustements

2. Assemblages par déformation élastique :

- 2.1 Assemblages par goupilles
 - 2.1.1 Goupilles cylindriques et coniques
 - 2.1.2 Calcul, choix et désignation de la goupille normalisée
- 2.2 Assemblages par clavettes
 - 2.2.1 Clavettes parallèles
 - 2.2.2 Clavettes inclinées forcées
 - 2.2.3 Clavettes spéciales
 - 2.2.4 Calcul, choix et désignation de la clavette normalisée
- 2.3 Arbres dentelés et arbres cannelés
 - 2.3.1 Domaine d'emploi
 - 2.3.2 Calculs, choix et désignation normalisée
- 2.4 Assemblages par douilles coniques et colliers fendus (liaisons réglables)
 - 2.4.1 Douilles coniques fendues

- 2.4.2 Colliers fendus
- 2.4.3 Calculs relatifs au comportement sous charges.
- 2.4.4 Dispositions constructives

3. Assemblages par éléments filetés

- 3.1 Différentes formes de filets et normalisation
- 3.2 Etude des efforts dans le filetage
- 3.3. Contrôle des assemblages par vis
- 3.4. Contrôle des profils de filetage
- 3.5 Vis de serrage et de fixation
 - 3.5.1 Tenue d'un boulon sous l'effet de charges statiques et dynamique
 - 3.5.2 Etude de la stabilité d'un assemblage en service-

Desserrage

3.5.3 Disposition constructive des assemblages par vis

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- -G. Lenormand, R. Mignée J. Tinel, Construction Mécanique (T1-T4), Ed. Foucher, 1969.
- J. P. Bassuet, fonction liaison, cours de l'INSA de Lyon, 1988;
- :- SHIGHLEY, J.E. "Mechanical engineering design". New York : Mc Graw-Hill, 2002.
- DEUTCHMAN, A.D.and als. "Machine design, Theory and Practice".
 Mc MILLAN, 1975
- AUBLIN, M.et als "Systèmes mécaniques, théorie et dimensionnement". Paris : Dunod, 1995
- Nicolet et Trottet "Eléments de construction" Dunod Université, Bordas Paris
- V.Dobrovolski , K.Zablonski et "Eléments de machines" édition Mir, Moscou
- Résistance des matériaux / V. Féodossiev. Mir

UE: Transversal

Matière 1 : Métrologie appliquée

Crédits :3 Coefficient :2

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- -Connaitre et maitriser les différentes techniques de mesure et de contrôle de forme et de dimensions linéaires et angulaires.
- -Connaitre les écarts et les paramètres de rugosité et leur mesure.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Physique 2, Mathématiques 1-3, Dessin technique.

Contenu de la matière :

1-Définitions et Vocabulaire :

- Généralités
- Qualités métrologiques des instruments de mesurage
- Etalonnage

2-Origine et causes d'erreurs :

- Origines et causes d'erreurs (L'instrument, le manipulateur, le milieu, la pièce..)
- Types d'erreurs des résultats de mesurage (Erreur systématique, absolue,..)

3-Métrologie mécanique :

- Généralités
- Règles
- Verniers

- Pied à coulisse
- Trusquin
- Micrometre (d'exterieur, d'interieur, de profondeur)
- Rapporteur d'angles
- Niveaux
- Comparateurs à cadran
- Barre-Sinus
- Etalons
- Jauges
- Calibres à limites

4-Métrologie optique:

- Projecteur de profils
- Diviseur optique
- Microscopes
- Interferometres (d'Young, de Michelson)
- 5- Métrologie électrique
- **6- Contrôle de forme** (rectitude, sphéricité, circularité, cylindricité, planéité)
 - **7-Contrôle de position** (Parallélisme, perpendicularité, concentricité)
 - 8- Contrôle des filetages et des engrenages.
 - 9-Mesure et contrôle d'états de surface :
 - État de surface
 - Comparaison viso tactile
 - Appareils électroniques à capteurs

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- R. Dietrich et al., Précis de construction mécanique, 2. Méthodes, fabrication et normalisation, Ed. Nathan, 1979.

UE: Transversal

Matière 2 : Anglais technique

Crédits:1

Coefficient:1

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- -Connaître le vocabulaire de base de la technologie des matériaux en anglais.
- -Analyse et traduction d'un texte en langue anglaise
- -Comprendre et se faire comprendre à l'écrit et à l'oral

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Langue anglaise (S3)

Contenu de la matière :

- 1. Structure of materials
- 2. Phase Diagrams
- 3. Processing of ceramics
- 4. Processing of metals
- 5. Processing of plastics
- 6. Mechanical properties of materials
- 7. Optical properties of materials
- 8. Materials Selection

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- W. D. Callister, Jr., Materials Science and Engineering: An Introduction, John Wiley & Sons, Inc., 2007.

UE: Transversal

Matière 3: Informatique appliquée

Crédits:1

Coefficient:1

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- Maitriser l'outil informatique (word, excel, power point, navigation internet...)
- Maitriser le logiciel Matlab et ses applications dans le domaine de la technologie des matériaux.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Informatique (S1, S3), Bureautique et technologie Web (S2)

Contenu de la matière :

1. Introduction à la bureautique : Présentation des logiciels de bureautique

Word

Power point

Navigation Internet

- 2. Présentation générale du logiciel Excel :
 - Espace de travail Excel
 - Gestion de données
 - Graphismes
 - Tableaux dynamiques
 - Solveur...
- 3. Algorithmiques fondamentaux
- 4. Présentation générale du logiciel Matlab :
 - •Espace de travail Matlab,

- Vecteurs et polynômes,
- •Matrices et tableaux à plusieurs dimensions
- •Fichiers de commandes et de fonctions
- Programmations en langage Matlab
- Domaines d'application.

•

5. Génération de graphiques (figure 2D/3D...)

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

Semestre: 6

UE: Fondamentale (Propriétés et caractérisation des matériaux)

Matière 1 : Propriétés mécaniques des matériaux

Crédits:4

Coefficient:3

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- -Connaitre les diverses propriétés des matériaux et leur importance dans leurs transformations et leurs utilisations.
- -Connaitre certaines techniques de mesure des propriétés des matériaux.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Résistance des matériaux, Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

1. Elasticité

- 1. 1. Théorie des contraintes
 - Définition
 - Equations d'équilibre
 - Contraintes principales
 - Ellipsoïdes de contraintes
 - Contraintes de cisaillement maximas
 - Tenseurs déviatoriques et sphérique
- 1.2. Théorie des déformations
- 1.3. Relations contraintes déformations
 - a. Introduction
 - b. Loi générale de Hooke

2. Plasticité

- a. Courbe effort déformation (mono et poly cristaux)
- b. Aspects micrographiques de la déformation (glissement, maclage)

3. Rupture

- a. Types de rupture (ductile, fragile)
- b. Fatigue
- 4. Ténacité

Définition

Détermination expérimentale

5. Comportement thermomécanique

- -Essais mécaniques à chaud
- -Fluage:
 - Introduction
 - Le fluage activé thermiquement
 - Théories et mécanismes de fluage
- -Résistance aux chocs thermiques :
 - Définitions
 - Théories du choc thermique
 - Techniques expérimentaux de mesure de la résistance aux chocs thermiques

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

-D. François et al. "Comportement mécanique des matériaux" Hermès 1991

-W. Kurz et al. "Introduction à la science des matériaux" Presses Polytecniques romandes 1987

-G. Fantozzi, Rupture des matériaux, Cours 5^{ème} année SGM, INSA de Lyon.

Semestre: 6

UE: Fondamentale (Propriétés et caractérisation des matériaux)

Matière 2 : Propriétés physicochimiques des matériaux

Crédits:4

Coefficient:3

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Connaitre les diverses propriétés des matériaux et leur importance dans leurs transformations et leurs utilisations.

-Connaitre certaines techniques de mesure des propriétés des matériaux.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Résistance des matériaux, Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

- 1. Introduction et objectifs
- 2. Propriétés électriques
 - 2.1 Conductibilité et résistivité
 - 2.2 Diélectricité: conducteurs et isolants
 - 2.3 Ferroélectricité et piézoélectricité

3. Propriétés magnétiques

- 3.1 Ferromagnétisme
- 3.2 Ferrimagnétisme
- 3.3 Utilisation du magnétisme

4. Propriétés thermiques

- 4.1 Capacité calorifique
- 4.2 Conductibilité thermique
- 4.3 Diffusivité thermique
- 4.4 Dilatation thermique

5. Propriétés optiques

- 5.1 Photoconductivité : Transmission, réflexion, absorption
- 5.2 Coloration et brillance des matériaux
- 5.3 Diffusion des rayonnements : luminescence
- 5.4 Electroluminescence

6. Propriétés chimiques

- 6.1 Solubilité
- 6.2 Plastification
- 6.3 Tenue à l'oxygène
- 6.4 Tenue aux agents chimiques

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- -"Non destructive testing" Handbook. Vol.IV, Electromagnetic testing, American Society for non destructive testing (1987)
- -"Non destructive testing" Handbook Vol.III, American Society for non destructive testing (1985)
- -W. Kurz et al. "Introduction à la science des matériaux" Presses Polytecniques romandes 1987

UE: Fondamentale (Propriétés et caractérisation des matériaux)

Matière 3 : Analyse et caractérisation

Crédits :4

Coefficient:3

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Rendre autonome et opérationnel l'étudiant sur les différentes techniques expérimentales de laboratoire relatives à la caractérisation des matériaux.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

- 1. Introduction
- 2. Examen microscopique:
 - 2.1 -Microscopie optique
 - Principe
 - Préparation micrographique de l'échantillon (prélèvement, polissage, attaques)
 - Applications (observation et mesure des inclusions et des grains)
 - 2.2 -Microscopie électronique à balayage (MEB)
 - Principe
 - Description du MEB
 - Applications (Observation, Microanalyse...)
 - 2.3 -Microscopie électronique à transmission (MET)
 - Principe
 - Description du MET

- Applications
- 2.4 -Autres types de microscopes (AFM, LSM...)

3. Analyses thermiques:

- 3.1 -Dilatomètrie:
 - Généralités
 - Différents types de dilatomètres (Différentiel et Absolu)
- 3.2 Analyse thermodifférentiel :
 - Principe
 - Applications et quelques exemples
- 3.3 Analyse thermogravimétrique
 - Principe
 - Applications et quelques exemples

4. Diffraction des rayons X

- Rayons X
- Diffraction
- Diffraction des rayons X
- Méthodes expérimentales de diffraction des rayons X
- Utilisations de la diffraction des rayons X

5. Fluorescence des rayons X

6. Autres techniques de caractérisation (Diffraction des Neutrons, Spectrométrie infrarouge à transformée de Fourier, Spectroscopie Raman)

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- -R.E. Loehman, L. E. Fitzpatrick, Characterization of ceramics, Ed. Butterworth-Heinemann, 1993.
- C. A. Jouenne, Traité de céramiques et matériaux minéraux, Editions Septima, Paris, 2001.

UE: Méthodologie : Matériaux et environnement

Matière 1 : Elaboration et mise en forme des verres

Crédits :2 Coefficient :1

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Connaitre les différentes étapes intervenant durant l'élaboration et la mise en forme des produits verriers.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Matériaux non métalliques : verres, céramiques et plastiques.

Contenu de la matière :

1. Elaboration du Verre

- 1.1 Matière première
- 1.2. Les étapes de l'élaboration du verre
 - 1.2.1. La fusion
 - 1.2.2. L'affinage et l'homogénéisation
 - 1.2.3 Conditionnement thermique
- 1.3. Les différents types de fours (Le four à pot, Les fours à oxygène, Les fours électriques,...)
 - 1.4. Les réfractaires des fours de verrerie
 - 1.5. Les émissions polluantes des fours de verrerie

2. La Mise en forme du verre

- 2.1. Les procédés manuels
- 2.2. Le formage du verre creux
 - 2.2.1 Les principales étapes de la mécanisation

- 2.2.2 Les procédés utilisés dans les machines actuelles (Pressage, Centrifugation, Procédé pressé-soufflé, Le formage industriel des tubes de verre...).
 - 2.3. Le formage industriel du verre plat
 - 2.3.1 Le procédé Fourcault
 - 2.3.2 Le procédé Pittsburgh
 - 2.3.3 Le procédé Colbrun
 - 2.3.4 L'étirage vers le bas
 - 2.3.5 Le verre à glace
 - 2.3.6 Le verre flotté
 - 2.3.7 Le bombage du verre plat
 - Pare-brise d'automobiles
 - Verre bombé trempé
 - 2.3.8 Le verre plat et les couches minces
 - Procédés utilisés
 - Les différentes sortes de couches déposées
 - 2.4. Les fibres de verre
 - 2.4.1 Le fibrage mécanique
 - 2.4.2 L'étirage par frottement gazeux
 - a- L'étirage à la flamme
 - b- L'étirage à la vapeur
 - 2.4.3 L'étirage centrifuge
 - 4.3.1 Le fibrage sur roues
 - 4.3.2 Le procédé TEL
 - 2.4.4 Les fibres optiques
 - a- Les fibres pour l'instrumentation optique
 - b- Les fibres pour télécommunications

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- J. Zarzicky, le verre et l'état vitreux, 1982.
- H. Scholze, le Verre: Nature, structure et propriétés, Institut du verre de Paris, 1980.
- J. Barton et C. Guillemet, Le verre science et technologie, EDP Sciences, 2005.

UE: Méthodologie : Matériaux et environnement

Matière 2 : Choix des matériaux

Crédits :2 Coefficient :1

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Maitriser la méthodologie nécessaire à l'optimisation du choix des matériaux pour des applications et/ou des procédés de fabrication donnés.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

- 1. Introduction
- 2. Propriétés des matériaux
 - 1 Classes des matériaux
 - 2 Propriétés standard des matériaux
 - 3 Propriétés d'usage des matériaux
- 3. Sélection des matériaux
 - 1 Adéquation matériaux fonction
 - 2 Adéquation matériaux procédé
 - 3 Sélection multicritères

4. Etude de cas

- 1 Analyse fonctionnelle
- 2 Cahier des charges
- 3 Critères de choix
- 4 Outils de choix
- 5 Notions d'éco-conception

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- Matériaux (1&2 5Ashby & Jones), Ed. Dunod, 1991
- Des Matériaux (Jean-Paul Bailon, Jean-Marie Dorlot), Ed. Presses Internationales Polytechnique, 2004.

Semestre: 6

UE: Méthodologie (Matériaux et environnement)

Matière 3 : Recyclage

Crédits :2 Coefficient :1

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

- -Sensibilisation à la protection de l'environnement et à la gestion des déchets
- -Connaitre le cycle de vie de certains matériaux et l'effet sur l'environnement.
- -Connaitre les processus de recyclage des matériaux.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

- 1. Recyclage:
 - Généralités

- Cycle de vie
- Avantages et inconvénients
- Matériaux et propriétés

2. Matières plastiques et environnement

- Généralités
- Dégradation des plastiques
- Techniques de recyclage

3. Recyclage des verres :

- Généralités
- Classes des verres
- Recyclage des verres

4. Recyclage des aciers :

- Fabrication des aciers
- Familles des aciers
- Cycle de vie des aciers
- Techniques de recyclage
- Produits recyclés

5. Recyclage des alliages non ferreux

- Alliages d'aluminium
- Alliages de cuivre

6. Recyclage des déchets papiers :

- Généralités
- Cycle de vie
- Techniques de recyclage
- Produits recyclés

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

-L. Lundquist, Y. Leterrier, P. Sunderland, J-A E. Manson, Life cycle engineering of plastics, Elsevier, 2000.

UE: Méthodologie (Technologie des matériaux fonctionnels)

Matière 1 : Matériaux composites

Crédits :3 Coefficient :2

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Comprendre l'intérêt des composites, connaître les différents renforts, les différents types de tissus et les différents types de résines.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Résistance des matériaux, Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

- 1. Généralités
- 2. Classes et familles des matériaux composites
- 3. Renforts:
 - Particules et charges
 - Fibres
 - Verres
 - Métalliques
 - Céramiques

4. Architectures et orientations des fibres

- Aléatoire
- Unidirectionnel
- Bidirectionnel
- Tri directionnel

5. Matrices:

- Organiques
- Métalliques

Céramiques

6. Procédés de mise en forme des composites

7. Comportement mécanique

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

Jean-Marie Berthelot, Matériaux composites : Comportement

mécanique et analyse des structures.

- De Bhagwan D. Agarwal, Lawrence J. Broutman et K.

Chandrashekhara, Analysis and Performance of Fiber Composites, -

Wiley

Semestre: 6

UE: Méthodologie (Technologie des matériaux fonctionnels)

Matière 2 : Matériaux innovants

Crédits:2

Coefficient:1

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Connaître l'actualité sur les matériaux innovants et leurs procédés de mise en oeuvre.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

1. Nanomatériaux :

- Nanotechnologies
- Nano-objet
- -Nanomatériaux :

Matériaux nanostructurés en surface Matériaux nanostructurés en volume

-Développement et production

2. Biomatériaux :

- Les inertes
- Les bioactifs
- -Différents types de biomatériaux (Biométaux, biocéramiques, biopolymères, bioverrres, couches minces et revetement)
 - -Essais sur les biomatériaux

3. Matériaux fonctionnels

- Fonctionnalité d'un matériau
- Matériaux actifs et intelligents
- 4. Alliages à mémoire de forme
- 5. Matériaux pour l'optique :
 - Verres IR
 - Céramiques transparentes

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- -L. L. Hench, Bioceramics, J. Am. Ceram. Soc., [7]1705-28 (1998).
- A. Krell, T. Hutzler, J. Klime, Transparent ceramics: Transmission Physics and consequences for Materials Selection, Manufacturing, and Applications, Proc. 10th Ecers Conf. (2007).
- -B. D. Ratner and A. S. Hoffman, F. J. Schoen, J. E. Lemons, BIOMATERIALS SCIENCE: An Introduction to Materials in Medicine, Academic Press (1996).
- C. Bary Carter, Ceramic materials: science and technology, Springer 2007

- Callister, Fundamentals material science and engineering, John Wiley Corporation
- J. Broza, Materials processing handbook, CRC press

UE: Méthodologie (Technologie des matériaux fonctionnels)

Matière 3 : Matériaux pour l'électronique et l'électronique

Crédits:3

Coefficient:2

Objectifs de l'enseignement (Décrire ce que l'étudiant est censé avoir acquis comme compétences après le succès à cette matière – maximum 3 lignes).

-Connaître les différents matériaux utilisés en électronique et en électrotechnique et les techniques de caractérisation et certaines de leurs applications.

Connaissances préalables recommandées (descriptif succinct des connaissances requises pour pouvoir suivre cet enseignement – Maximum 2 lignes).

Matériaux métalliques, Matériaux non métalliques : verres, céramiques et plastiques

Contenu de la matière :

- 1- Introduction générale
- 2-Matériaux conducteurs
- 3- Semi-conducteurs
- 4- Supraconducteurs
- 5- Matériaux piézoélectriques
- 6- Matériaux ferroélectriques
- 7- Matériaux magnétiques
- 8- Matériaux au Silicium
- 9- Capteurs

Mode d'évaluation : Examen

Références (Livres et polycopiés, sites internet, etc):

- Matériaux Electrotechnique, Robert P., BORDAS, 1993.
- Magnétisme et matériaux magnétiques pour l'électrotechnique, Brissonneau, P., Hermès, 1997.
- Matériaux diélectriques pour le génie électrique, Martinez-vega, J., Hermès-Lavoisier, 2007.

M - CONVENTIONS

LETTRE D'INTENTION TYPE

(En cas de licence coparrainée par un autre établissement universitaire)

(Papier officiel à l'entête de l'établissement universitaire concerné)

•	Approbation		coparrainage	de	la	licence	
Par la présente, l'université (ou le centre universitaire)							
déclare coparrainer la licence ci-dessus mentionnée durant toute la période d'habilitation de la licence.							
A cet effet, l'université (ou le centre universitaire) assistera ce projet en :							
 Donnant son point de vue dans l'élaboration et à la mise à jour des programmes d'enseignement, Participant à des séminaires organisés à cet effet, En participant aux jurys de soutenance, En œuvrant à la mutualisation des moyens humains et matériels. 							
SIGNATURE de la personne légalement autorisée :							
FONCTION	:						
Date :							

LETTRE D'INTENTION TYPE

(En cas de licence en collaboration avec une entreprise du secteur utilisateur)

(Papier officiel à l'entête de l'entreprise)

OBJET : Approbation du projet de lancement d'une formation de Licence intitulée :
Dispensée à :
Par la présente, l'entreprisedéclare sa volonté de manifester son accompagnement à cette formation en qualité d'utilisateur potentiel du produit.
A cet effet, nous confirmons notre adhésion à ce projet et notre rôle consistera à :
 Donner notre point de vue dans l'élaboration et à la mise à jour des programmes d'enseignement, Participer à des séminaires organisés à cet effet, Participer aux jurys de soutenance, Faciliter autant que possible l'accueil de stagiaires soit dans le cadre de mémoires de fin d'études, soit dans le cadre de projets tuteurés.
Les moyens nécessaires à l'exécution des tâches qui nous incombent pour la réalisation de ces objectifs seront mis en œuvre sur le plan matériel et humain.
Monsieur (ou Madame)*est désigné(e) comme coordonateur externe de ce projet.
SIGNATURE de la personne légalement autorisée :
FONCTION:
Date :

N - CV succinct du responsable de la Licence

Curriculum Vitae succinct

-Nom et prénom : KOLLI Mostafa

-Date et lieu de naissance : 14/11/1973 à El Eulma, Sétif.

-Mail et téléphone : kolmus_eulma@yahoo.fr

-Grade : Maitre de conférences Classe A.

- -Etablissement ou institution de rattachement : Institut d'Optique et mécanique de précision (IOMP), Université Ferhat Abbas Sétif 1.
- -Diplômes obtenus (graduation, post graduation, etc...) avec date et lieu d'obtention et spécialité :
- **1- Ingéniorat d'état** en optique et mécanique de précision, **option**: Technologie d'appareils. Date et lieu d'obtention : Juin 1996, IOMP, UFA.Sétif1.
- **2- Magister** en optique et mécanique de précision. Soutenue publiquement juillet 1999 à l'IOMP, UFA.Sétif1.
- **3- Doctorat en sciences** en optique et mécanique de précision. Soutenue publiquement en avril 2008 à l'IOMP, UFA.Sétif1.
- **3- Habilitation universitaire** en optique et mécanique de précision. Soutenue publiquement en juillet 2010 à l'IOMP, UFA.Sétif1.

Compétences professionnelles pédagogiques

- **1-Matières enseignées**: Mathématiques, Dessin industriel, Construction mécanique, Construction conforme à la fabrication mécanique, Matériaux, Métrologie, Moulage et métallurgie des poudres, Analyse et caractérisation des matériaux, Elaboration des matériaux et mise en forme, Techniques d'analyse et de contrôle des matériaux.
- **2- Encadrement de projets de fin d'études :** Environ 15 projets de fin d'études (DEUA, Ingénieurs), 05 sujets master et 04 doctorats.
- **3- Publications :** plus de 13.
- **4-Communications :** plus de 50.
- **5-Projets de recherche CNEPRU :** 05 projets ; chef de 02 projets et membre dans trois autre projets.
- 6-**Projets de recherche PNR :** 02 projets ; chef d'un projet et membre dans un autre.
- 7-Projets CMEP: 02 projets; membre dans deux projets.

O- Avis et Visas des organes administratifs et consultatifs

Intitulé de la formation à recrutement National : Licence Technologie des matériaux

Comité Scientifique de département				
Avis et visa du Comité Scientifique :				
Date :				
Conseil Scientifique de la Faculté (ou de l'institut)				
Avis et visa du Conseil Scientifique :				
Date :				
Doyen de la faculté (ou Directeur d'institut)				
Avis et visa du Doyen ou du Directeur :				
Date :				
Chef d'établissement				
Avis et visa du Chef d'établissement:				
Date:				

P - Visa de la Conférence Régionale

(Uniquement à renseigner dans la version finale de l'offre de formation)